- Department: Mathematics
- Credit value: 20 credits
- Credit level: M
- Academic year of delivery: 2023-24
- See module specification for other years: 2024-25
Riemann surfaces lie at the interface of complex analysis, complex geometry and algebraic geometry. This course provides an introduction to Riemann surfaces, from the initial concepts through to more advanced applications. The course will emphasise concrete examples of algebraic curves to help visualise the theoretical concepts.
Pre-requisite modules
Co-requisite modules
- None
Prohibited combinations
- None
A course in complex analysis that covers holomorphic and meromorphic functions, Laurent series, complex integration and Cauchy’s theorem will give sufficient background for this course. It is expected that students have sound knowledge of all of these topics before the course begins.
Some of the concepts used in this course will be introduced at a fast pace, therefore it will be useful to have seen the topics below.
Charts and Atlases (such as those studied in Differential Geometry of Curves and Surfaces)
Distinguishing compact surfaces by their genus (studied in Topology)
Occurrence | Teaching period |
---|---|
A | Semester 2 2023-24 |
Riemann surfaces lie at the interface of complex analysis, complex geometry and algebraic geometry. This course provides an introduction to Riemann surfaces, from the initial concepts through to more advanced applications. The course will emphasise concrete examples of algebraic curves to help visualise the theoretical concepts.
By the end of the course, students will be able to
Use charts and atlases to prove that a given system of equations defines a Riemann surface.
Construct examples of Riemann surfaces as algebraic curves and compute their genus.
Integrate a differential form on a Riemann surface.
Use the long exact sequence to compute sheaf cohomology groups.
Use the Riemann-Roch theorem to compute sheaf cohomology groups.
Basic definitions and examples
Functions on Riemann surfaces and holomorphic maps between Riemann surfaces
More examples of Riemann surfaces
Integration on Riemann surfaces
Divisors and maps to projective space
Introduction to sheaves
Riemann-Roch, Serre duality and applications
Task | % of module mark |
---|---|
Closed/in-person Exam (Centrally scheduled) | 80 |
Essay/coursework | 5 |
Essay/coursework | 5 |
Essay/coursework | 5 |
Essay/coursework | 5 |
None
Four homework sets (5% each) which are separate from (but related to) the associated seminar (first four seminars). Extensions are possible, as solutions won’t be released until all the marking is complete. [The fifth seminar will have a formative assignment associated with it].
Final exam (80%).
Task | % of module mark |
---|---|
Closed/in-person Exam (Centrally scheduled) | 100 |
Current Department policy on feedback is available in the student handbook. Coursework and examinations will be marked and returned in accordance with this policy.
Main Text:
Supplementary Texts: