Accessibility statement

Quantum Mechanics - MAT00096H

« Back to module search

  • Department: Mathematics
  • Credit value: 20 credits
  • Credit level: H
  • Academic year of delivery: 2024-25
    • See module specification for other years: 2023-24

Module summary

This module aims to provide a deeper understanding of quantum mechanics. The emphasis will be on the mathematical foundations of quantum mechanics as well as the conceptual changes compared to classical mechanics.

Related modules

Co-requisite modules

  • None

Prohibited combinations

  • None

Additional information

Post-requisite modules: Quantum Field Theory

Module will run

Occurrence Teaching period
A Semester 2 2024-25

Module aims

This module aims to provide a deeper understanding of quantum mechanics. The emphasis will be on the mathematical foundations of quantum mechanics as well as the conceptual changes compared to classical mechanics.

Module learning outcomes

By the end of the module, students will be able to:

  1. Use the abstract operator formalism of quantum mechanics for quantum states and observables;

  2. Explain the description of quantum mechanics in terms of position or momentum representations using "wave functions";

  3. Describe the harmonic oscillator and angular momentum within quantum theory;

  4. Describe features of quantum mechanics distinguishing it from classical mechanics, e.g. tunnelling, Heisenberg’s uncertainty relation and commutation relations.

Module content

  • Develop quantum theory of particles considering the position and momentum representations of wavefunctions

  • Discuss different observables including angular momentum

  • Learn about measurements, expectation values and probability densities

  • Learn more about quantum dynamics and the Schroedinger equation

  • Discuss symmetries in quantum mechanics and identical particles

  • See illustrations of these ideas with applications to Heisenberg’s uncertainty relation, quantum tunnelling and the harmonic oscillator.

Indicative assessment

Task % of module mark
Closed/in-person Exam (Centrally scheduled) 100

Special assessment rules

None

Indicative reassessment

Task % of module mark
Closed/in-person Exam (Centrally scheduled) 100

Module feedback

Current Department policy on feedback is available in the student handbook. Coursework and examinations will be marked and returned in accordance with this policy

Indicative reading

R Shankar, Principles of Quantum Mechanics, Springer (U 0.123 SHA)

L I Schiff, Quantum Mechanics, McGraw-Hill (U 0.123 SCH)

S Gasiorowicz, Quantum Physics (2nd edition), J. Wiley (U 0.12 GAS)



The information on this page is indicative of the module that is currently on offer. The University constantly explores ways to enhance and improve its degree programmes and therefore reserves the right to make variations to the content and method of delivery of modules, and to discontinue modules, if such action is reasonably considered to be necessary. In some instances it may be appropriate for the University to notify and consult with affected students about module changes in accordance with the University's policy on the Approval of Modifications to Existing Taught Programmes of Study.