- Department: Electronic Engineering
- Credit value: 20 credits
- Credit level: H
- Academic year of delivery: 2024-25
- See module specification for other years: 2023-24
Mathematical and engineering sciences are used to highlight principles governing the function of physiological systems. Simulation of normal and disease states are used in understanding, devising, and testing systems for intervention. This module aims to equip students with the foundational knowledge on the interface between engineering and medicine at the biological, physiological and clinical levels. The module will aim to convey the general engineering principles governing the body coordinating and integrating systems, the design and realisation of such medical devices, and the introduction of technology to hospitals and healthcare settings.
Learning will be achieved through case studies, exercises, models, and laboratory exercises.
Occurrence | Teaching period |
---|---|
A | Semester 2 2024-25 |
Subject content aims:
Graduate skills aims:
Investigate healthcare challenges, needs, and requirements development.
Develop system concepts that are derived from requirements, and then realised in physical and process form.
The establishment of means to verify, validate, and deploy healthcare systems that address the need and meet requirements.
Subject content learning outcomes
After completing this module, students should be able to:
Graduate skills learning outcomes
After successful completion of this module, students will:
Professional Skills
Laboratory practice: Students will be expected to follow good laboratory practice procedures.
Health and safety: Students will be introduced to health and safety in the wider context including relevant legislation as it affects product development.
Graduate skills
Teamwork: Students will be introduced to the need to establish communications, coordination and control mechanisms within their group to help deliver efficiently and effectively. The groups will be guided in the establishment of these by their academic supervisor. They will be expected to describe their approach and any problems they encountered in their individual report.
Research: Students will determine the research needs for their project and seek out appropriate resources. They will be expected to maintain accurate and professional records of their research and report it through accurate and full referencing.
Communication: Students will be expected to document the work undertaken in their project to a professional standard, producing appropriate information for technical and non-technical audiences. Examples of technical information include specifications, test reports, etc. Examples of non-technical information include user manuals, etc.
Ethics: Groups will be expected to decide, in conjunction with their group academic supervisor, what ethical approval is required and then produce and gain appropriate approval for it.
Project management: Students will be introduced to formal project management tools and required to produce a planned and managed project plan.
Meetings & meetings management: Students will be expected to record their weekly meetings and track actions allocated. They will be introduced to the concept of Design Reviews and be expected to hold them as part of the project.
Risk management: Students will be introduced to risk management as a manageable activity, including how to quantify risks and use a risk register as a tool to manage risks. They will produce a risk register for their project.
Time management: Students will be responsible for their own time management and will be expected to write a reflective critique of their time management in the individual section of their project report.
Task | % of module mark |
---|---|
Essay/coursework | 80 |
Groupwork | 20 |
None
* Students will be graded based on their individual performance. Each student will be tasked with a specific role on the mechanical, electronic, software and medical aspects of the project.
Task | % of module mark |
---|---|
Essay/coursework | 80 |
'Feedback’ at a university level can be understood as any part of the learning process which is designed to guide your progress through your degree programme. We aim to help you reflect on your own learning and help you feel more clear about your progress through clarifying what is expected of you in both formative and summative assessments. A comprehensive guide to feedback and to forms of feedback is available in the Guide to Assessment Standards, Marking and Feedback.
The School of PET aims to provide some form of feedback on all formative and summative assessments that are carried out during the degree programme. In general, feedback on any written work/assignments undertaken will be sufficient so as to indicate the nature of the changes needed in order to improve the work. The School will endeavour to return all exam feedback within the timescale set out in the University's Policy on Assessment Feedback Turnaround Time. The School would normally expect to adhere to the times given, however, it is possible that exceptional circumstances may delay feedback. The School will endeavour to keep such delays to a minimum. Please note that any marks released are subject to ratification by the Board of Examiners and Senate. Meetings at the start/end of each term provide you with an opportunity to discuss and reflect with your supervisor on your overall performance to date.
Ernesto Iadanza (2019) Clinical Engineering Handbook Book, 2nd edition. Elsevier
David Levine (2014) Whittle's Gait Analysis, 5th edition. Churchill Livingstone
Robert Plonsey and Roger C. Barr (2014) Bioelectricity: A Quantitative Approach. 3rd edition. New York: Springer
Northrop, R.B. (2010) Signals and Systems Analysis In Biomedical Engineering. 2nd edition. Boca Rato: CRC press.
Webster, J.G. (2009) Medical Instrumentation Application and Design. 4th ed. Chichester: Wiley