- Department: Electronic Engineering
- Credit value: 20 credits
- Credit level: H
- Academic year of delivery: 2023-24
- See module specification for other years: 2024-25
The module aims to equip students with foundational knowledge and skills of engineering in medical and clinical applications. The range of medical applications is very broad, so the module will aim to convey the general constraints of the health sector then give state-of-the-art in-depth knowledge in selected areas like Biomedical device development, biomaterials, bio manufacturing, human anatomy, biology of cancer. This module is constituted of a wide range of topics that aim to familiarise students with the engineering fields as well as medical sciences and how they can be applied together to develop better healthcare technologies and equipment. Those topics will be combined to realise in practice devices with biomedical focus, for example, sensors for measuring blood pressure and pulse oximetry, instruments for cancer treatment, and robotic technologies for surgeries and rehabilitation.
Learning will be achieved through case studies, exercises, models, and laboratory exercises.
Occurrence | Teaching period |
---|---|
A | Semester 1 2023-24 |
Subject content aims:
Introduce the interface between engineering and medicine at the biological level.
Develop understanding of the clinical need and its representation as Engineering specifications. Articulate how and why the biomedical system design engineering approach can address many of the needs.
Provide practical aspects of subject knowledge required for developing biomedical engineering knowledge, including: electronics, control theory, microcontrollers, MATLAB programming, biomedical device development, biomaterials, bio manufacturing, human anatomy, biology of cancer.
Graduate skills aims:
Introduce biomedical device (surgical instrument and diagnostic devices) development process, involving subject knowledge from electronics, control theory, microcontrollers, MATLAB programming, machine design etc.
Introduce Biomaterials and Bio fabrication (additive manufacturing, quality assurance of medical devices). Integration of tissue engineering and bioreactors into biomedical engineering.
Introduction to human anatomy, biology of cancer, its prognosis in the human body.
Provide a platform for students to improve their skills by developing more complicated systems and experimenting with more advanced control paradigms.
Subject content learning outcomes
After successful completion of this module, students will:
Be able to explain the principles that govern the working of the human body.
Be able to explain human anatomy and constraints associated with it while developing biomedical solutions.
Explain layers of human anatomy such as organ systems, organs, tissues, cells, nucleus, atoms etc.
Explain the process of biomedical device development which can be used either for surgical, diagnostic and rehabilitation applications.
Learn and define the following terms: biomaterial, biocompatibility, cytotoxicity, biodegradation, and inflammation. Evaluate whether or not a material can be used as a biomaterial.
Be able to analyse the basic principles of biomaterials selection, additive manufacturing, quality assurance and regulatory considerations of medical products.
Define the following terms: additive manufacturing, subtractive manufacturing, quality assurance, good manufacturing processes, and standardised procedure (ISO, DIN), Describe important steps and considerations to medical product approval and quality assurance of medical products.
Be able to analyse performance of a biomedical device using stress analysis, curating performance parameters.
Learn to collect physiological signals from biomedical devices and perform data analysis for validating biomedical device performance.
Learn about physiological changes from the interaction of discrete biomedical instruments and the human body.
Graduate skills learning outcomes
Graduate skills
Teamwork: Students will be introduced to the need to establish communications, coordination and control mechanisms within their group to help deliver efficiently and effectively. The groups will be guided in the establishment of these by their academic supervisor. They will be expected to describe their approach and any problems they encountered in their individual report.
Research: Students will determine the research needs for their project and seek out appropriate resources. They will be expected to maintain accurate and professional records of their research and report it through accurate and full referencing.
Communication: Students will be expected to document the work undertaken in their project to a professional standard, producing appropriate information for technical and non-technical audiences. Examples of technical information include specifications, test reports, etc. Examples of non-technical information include user manuals, etc.
Ethics: Groups will be expected to decide, in conjunction with their group academic supervisor, what ethical approval is required and then produce and gain appropriate approval for it.
Project management: Students will be introduced to formal project management tools and required to produce a planned and managed project plan.
Meetings & meetings management: Students will be expected to record their weekly meetings and track actions allocated. They will be introduced to the concept of Design Reviews and be expected to hold them as part of the project.
Risk management: Students will be introduced to risk management as a manageable activity, including how to quantify risks and use a risk register as a tool to manage risks. They will produce a risk register for their project.
Time management: Students will be responsible for their own time management and will be expected to write a reflective critique of their time management in the individual section of their project report.
Professional Skills
Laboratory practice: Students will be expected to follow good laboratory practice procedures.
Task | % of module mark |
---|---|
Essay/coursework | 60 |
Groupwork | 40 |
None
Students will be graded based on their individual performance. Each student will be tasked with a specific role on the mechanical, electronic, software and medical aspects of the project.
Task | % of module mark |
---|---|
Essay/coursework | 100 |
BRIEFING
The Department of Electronic Engineering aims to provide some form of feedback on all formative and summative assessments that are carried out during the degree programme. In general, feedback on any written work/assignments undertaken will be sufficient so as to indicate the nature of the changes needed in order to improve the work. Students are provided with their examination results within 25 working days of the end of any given examination period. The Department will also endeavour to return all coursework feedback within 25 working days of the submission deadline. The Department would normally expect to adhere to the times given, however, it is possible that exceptional circumstances may delay feedback. The Department will endeavour to keep such delays to a minimum. Please note that any marks released are subject to ratification by the Board of Examiners and Senate. Meetings at the start/end of each term provide you with an opportunity to discuss and reflect with your supervisor on your overall performance to date.
Formative Feedback
Regular lectures, workshop and lab sessions will help students to engage with concepts of biomedical engineering. Project reports and associated presentations will help students to develop problem solving, critical analysis and public speaking skills.
Opportunities for obtaining formative feedback include lab work with spoken feedback and problem-solving, help during lab demonstrations, speaking about assignment plans with academics, revision sessions and workshops, and pre-presentation briefing sessions.
Summative Feedback
Coursework: Weekly lectures followed by individual/group project demonstrations will help students to gain feedback on understanding the key module material covered in the lectures. Emails to the Module Coordinator with Questions / Comments will be answered as soon as possible.
Guidance for healthcare and social services organisations on managing medical devices in practice. Available from: https://www.gov.uk/government/publications/managing-medicaldevices
Brown, B.H., Smallwood, R.H., Barber, D.C., Lawford, P.V. and Hose, D.R. (1999) Medical
physics and biomedical engineering. St Louis: Turtleback Books.
Ratner, B.D., Hoffman, A.S., Schoen, F.J. and Lemons, J.E. (2012) Biomaterials science: an introduction to materials in medicine. 3rd ed. Cambridge: Academic Press.
Biomaterials: The Intersection of Biology and Materials Science Hardcover – Illustrated, 5 Feb. 2008
by Johnna Temenoff (Author), Antonios Mikos (Author)
Biomedical Engineering: Bridging Medicine and Technology (Cambridge Texts in Biomedical Engineering) Hardcover – 21 May 2015 by W. Mark Saltzman
Biomedical Engineering Fundamentals (The Biomedical Engineering Handbook, Fourth Edition) Paperback – 26 Feb. 2018 by Joseph D. Bronzino (Author), Donald R. Peterson (Author)