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Abstract

A well-established negative correlation exists between lifetime income and health
and mortality risk. We quantify the welfare implications of living longer and using
less LTC by higher incomes, implying higher lifetime retirement income and lower
lifetime LTC cost. To this end, we model singles’ and couples’ consumption and
saving behavior throughout the life cycle. Households face uncertain labor income
at working age and uncertain and heterogeneous health and mortality across so-
cioeconomic groups, so precautionary savings will differ across these groups. In
addition, we assume that households value living and giving bequests to their heirs,
implying a potential saving motive for bequests. We estimate the parameters of the
model using unique administrative data from the Netherlands. Old-age insurance
programs for retirement and LTC provision result in a substantial redistribution of
welfare due to socioeconomic inequalities in LTC needs and mortality. The welfare
effect amounts to 23.4% additional consumption after age 65 for the income-rich
compared to those in the bottom lifetime income quartile. A large part of 22.2pp
of the welfare gain for the richer households is explained by their strong preferences
for leaving bequests: they have lower co-payments for LTC and more retirement
income, which they spend on leaving a larger bequest upon death.
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1 Introduction

Health is strongly associated with socioeconomic status (Deaton, 2002; Chetty et al.,

2016). This is a fundamental aspect of inequality in society with important implications

for the progressivity of public health and social security policies for retired individuals

(Poterba, 2014; Auerbach et al., 2017). As the income-rich live longer than the income-

poor, they receive more years of social security benefits.1 In contrast, better health

may induce lower long-term care (LTC) needs for the income-rich, implying fewer years

of costly out-of-pocket LTC expenditures, such as co-payments for nursing home use.2

Thus, health inequalities could imply an unintended income-regressive redistribution.

This raises two important questions: What is the size of the welfare gain for households

with higher socioeconomic status due to expecting to live longer and use LTC for a

shorter time, and what mechanisms generate the gains? Such analysis should go beyond

a conventional comparison of lifetime benefits and contributions and taxes (see, e.g., Goda

et al., 2011a; Bosworth et al., 2016) because welfare consists of many other non-monetary

factors, including the utility of consumption, bequeathing, and living longer (Bernheim,

1987). Yet, the size of the welfare gains and their mechanisms are not precisely pinpointed

because a structural modeling approach allowing for counterfactuals is rarely applied.

This paper quantifies differences in the distribution of welfare due to socioeconomic in-

equalities in health. Furthermore, we investigate LTC co-payments and leaving bequests

as mechanisms behind the differences. Bequests are particularly interesting because ear-

lier work finds that wealthier households value these, and households can enlarge them

when lifetime social insurance benefits are higher (De Nardi et al., 2010). We develop a

life-cycle model of singles and couples where households value consumption, bequeath-

ing, and living longer and are exposed to uncertain income during working age, and

uncertain LTC use and mortality after that. Importantly, LTC use and survival risks

differ exogenously by gender, marital status, and lifetime income quintiles to replicate

the availability of informal care and the presence of socioeconomic differences in health.

1For socioeconomic inequality in mortality, see, e.g., Deaton (2002); Smith (2007); Chetty et al. (2016).
2For socioeconomic inequality in LTC use, see, e.g., Goda et al. (2011b); Jones et al. (2018); Rodrigues

et al. (2018); Tenand et al. (2020a).
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Our study focuses on the Netherlands with a generous and comprehensive LTC system

(Bakx et al., 2023), including means-tested co-payments for nursing home care. We es-

timate the model using unique administrative data on income, assets, LTC needs, and

mortality from 2006 to 2014. Finally, we shut down socioeconomic inequalities in health:

we use the estimated model to compute how much consumption compensation each life-

time income quintile would require to be indifferent to being exposed to the LTC use and

mortality risk of the bottom lifetime income quintile (cf. De Nardi et al., 2023). To see

the impact of bequests and LTC co-payments, we remove them from the baseline model

and re-compute the so-called consumption compensation equivalent.

Inspiration for our counterfactual and welfare measure comes from De Nardi et al.

(2023). They use a structural life-cycle framework to quantify the lifetime cost of self-

reported ‘bad’ health status for different initial health types. By assuming away the bad

health shocks, they quantify the welfare cost of poor health for distinct health types.

While we closely follow their approach, we conceptually differ as we shut down hetero-

geneity in health shocks rather than the health shock (uncertainty) itself.

The estimation proceeds in two steps. First, we estimate income, LTC, and mortal-

ity risk processes and calibrate the risk aversion parameter. Second, we include these

health and income risks in a structural life-cycle model and estimate its key behavioral

parameters: the subjective discount factor, consumption equivalence scale, the strength

of the bequest motive, and the extent to which bequests are a luxury good. We estimate

the parameters by matching simulated asset profiles to key aspects of the data, including

asset holdings by marital status and lifetime income quintile. Also, we calibrate a pa-

rameter involving the Value of a Statistical Life, ensuring that households prefer living

over death in utility terms (cf. Hall and Jones, 2007). After that, we use the estimated

model to make counterfactual predictions.

Aligned with U.S. work, our findings identify leaving bequests as an important channel

for the income-rich to save: we find the marginal propensity to bequeath to be unit

value for every euro above a consumption level of 40 thousand euros. This saving motive

almost exclusively involves households in the top lifetime income quintile; hence, bequests
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are luxury goods. Turning to differences between singles and couples, the estimated

equivalence scale of consumption is 1.145 and lower than usually documented in the

literature (see e.g., De Nardi et al., 2021), implying Dutch households can save more due

to stronger economies of scale. Lastly, the estimated subjective discount factor of 0.960

reveals a moderate preference for current consumption.

In a subsequent counterfactual analysis, we remove socioeconomic differences in health

risks. We find that moving from the counterfactual (no health differences) to the baseline

(health differences exist) would increase consumption by 23.4% for the top income quintile

after age 65. To stress the importance of our utilitarian framework, we report a monetary

(accounting) gain of only 11.2%, driven mainly by more retirement benefits. Next, we

assume away a preference for bequest saving and find that the welfare gain of 23.4%

shrinks to 1.2% for the top lifetime income quintile. Hence, much of the welfare gain due

to health inequalities stems from leaving larger bequests. Stated otherwise, increased

bequest taxes could be a way to alleviate welfare gains due to living longer and using less

LTC. If we remove (abolish) co-payments, the welfare gain remains 21.8%, implying that

valuable bequests rather than co-payments explain the welfare gain.

Our paper builds on several different strands of literature. A recently developed liter-

ature quantifies the lifetime cost of (self-reported) bad health (see De Nardi et al., 2023,

and the references therein). We merge this to the large macro-oriented literature that

applies accounting and structural approaches to characterize the redistribution of old-age

social insurance in a heterogenous-agent economy, where programs include Medicaid (see,

e.g., De Nardi et al., 2016; Braun et al., 2017), Medicare (see, e.g., McClellan and Skin-

ner, 2006; Bhattacharya and Lakdawalla, 2006), Social Security (see, e.g., Goda et al.,

2011a; Fehr et al., 2013; Groneck and Wallenius, 2021), and co-payments for LTC (see,

e.g., Wouterse et al., 2021). Auerbach et al. (2017) advocates a more holistic account-

ing approach that includes all old-age social insurance programs to report progressivity.

Closest to our study, Bagchi (2019) and Jones and Li (2023) uses a structural life-cycle

model to study the interaction between heterogeneous mortality rates and social security

benefit formula reforms. We innovate this literature by going beyond self-reported health,
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mortality, and social programs; we also examine the contribution of heterogenous LTC

use and preferences (bequests) to the welfare redistribution.

The current paper also contributes to the quantitative-micro literature on retirees’

saving behavior. The desire to leave a bequest has received considerable attention as a

potential explanation for why more affluent households retain high levels of wealth at

very old ages, as in De Nardi et al. (2010), Lockwood (2018), Ameriks et al. (2020),

and Nakajima and Telyukova (2023). However, the relative importance of this bequest

saving and precautionary saving varies depending on the estimation strategy and data

sample. De Nardi et al. (2010) finds an insignificant bequest saving motive, arguably

because savings in the U.S. are fungible between high out-of-pocket medical expendi-

tures and a bequest purpose (Dynan et al., 2004). Furthermore, the income-rich are

under-represented in many surveys, including their Health Dynamics of the Oldest Old

(AHEAD) data set. Lockwood (2018) instead finds a significant bequest saving motive

by simultaneously fitting data on wealth and LTC insurance ownership, where the LTC

insurance ownership acts as an exclusion restriction. The novelty of our paper is the use

of data from a country where the need for precautionary saving against out-of-pocket

medical expenditures is low and where the income-rich are well-represented in the ad-

ministrative data.

Besides, we link to the scarce literature that empirically studies different saving be-

haviour by couples and singles within a life-cycle model (e.g., De Nardi et al., 2021). Like

De Nardi et al. (2021), we view marital status shocks and their impact on LTC use as

exogenous, indirectly capturing the relationship between informal care and LTC cost. It

should be noted that for parsimony, we do not model the determinants of informal care;

papers addressing such endogeneity stemming from altruistic and strategic informal care

provision include Barczyk and Kredler (2018) and Ko (2022).

The paper is organized as follows. Section 2 presents the socioeconomic differences

in health. Section 3 describes the life-cycle model. Section 4 provides the data and

estimation procedure. Section 5 discusses the second-step estimation results. Section 6

performs the counterfactual health experiment. Section 7 discusses and concludes.
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2 Socioeconomic Differences in LTC and Mortality

Before analyzing the welfare gain due to higher socioeconomic groups living longer and

using less long-term care (LTC), it is crucial to examine how large these differences are. To

quantify them, we follow van der Vaart et al. (2023) and use the same longitudinal data,

socioeconomic status measure, and method as in to compute households’ life histories

on marital status, LTC use and death. In the analysis, we focus on 65+ individuals

who are or were married at age 65; LTC use consists of institutional care use.3 We

observe 2,548,664 individuals and 1,487,109 households. See Appendix B.1 for a detailed

description of the data and a summary of the estimation method.

Table 1: Life Expectancy and Long-term Care Use by Lifetime Income Quintiles

All Bottom Second Third Fourth Top ΔTop -
(a) Men Bottom

LE at age 65 (years) 18.9
(18.8;19.0)

16.4
(16.1;16.7)

17.6
(17.4;17.8)

18.4
(18.2;18.5)

19.2
(19.1;19.4)

20.0
(19.8;20.1)

3.6
(3.2;3.9)

LTC (years)⋆ 1.9
(1.8;1.9)

1.8
(1.7;1.9)

2.0
(1.9;2.0)

2.0
(1.9;2.1)

1.9
(1.8;2.0)

1.7
(1.7;1.8)

−0.1
(−0.2;0.0)

Ever use LTC (%) 45
(44;45)

42
(40;43)

45
(44;46)

46
(45;47)

46
(45;47)

43
(42;44)

1
(0;3)

(b) Women

LE at age 65 (years) 22.4
(22.3;22.4)

21.8
(21.5;22.0)

22.2
(22.0;22.4)

22.2
(22.1;22.4)

22.5
(22.3;22.6)

22.5
(22.4;22.7)

0.7
(0.4;1.1)

LTC (years)⋆ 2.9
(2.9;2.9)

3.3
(3.1;3.4)

3.3
(3.2;3.4)

3.1
(3.0;3.1)

2.9
(2.8;2.9)

2.5
(2.5;2.6)

−0.7
(−0.9;−0.6)

Ever use LTC (%) 63
(62;63)

66
(65;68)

68
(67;69)

66
(65;67)

64
(63;64)

58
(57;58)

−9
(−10;−7)

Notes: Data: Dutch administrative records on individual and household marital status, gender, income,
assets, institutional care use, and death between 2006 and 2014. The history of marital status dates
back to 1995. Complete life histories on LTC use, deaths, and marital status are simulated according to
van der Vaart et al. (2023). The presented numbers are population-averaged measures for the life cycle
simulation of 100,000 households. We present the median estimates across 1,000 bootstrapped samples
and the 2.5th and 97.5th percentiles between brackets. Appendix B.2 provides the goodness-of-fit between
the simulated and empirical survival probabilities and LTC use rates by age, lifetime income, and gender.

Table 1 summarizes the remaining life expectancy (LE) and LTC use for men and

women at age 65. We find opposite socioeconomic differences in LTC use and remaining

life expectancy. Individuals within the top income quintile make less use of LTC but

live longer. Men (women) within the top income quintile live 3.6 (0.7) years longer than

their bottom income counterparts. Men (women) in the bottom income quintile use

LTC for 1.8 (3.3) years on average, while this is 0.1 (0.7) years less for their top income

3Home-based care use is not a separate state because its co-payments and, thus, redistributive effects
are very limited in the Netherlands (Tenand et al., 2020b).
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counterparts. Although the difference in LTC use is small for men, it is substantial for

women and amounts to 26% of their average duration of using LTC. The larger difference

for women can partially be explained by the fact that they often outlive their partner

and thus lose a potential source of informal care.

3 Life-Cycle Model

We develop a life-cycle model with uncertain LTC use and mortality to quantify the

welfare gain of the higher lifetime income quintiles using less LTC and living longer. At

every age t ∈ {25,26, ...100}, a household maximizes lifetime utility by choosing total

consumption expenditures c and savings a. The savings also determine the bequest

that is left upon the death of the last household member. Households derive utility

from consumption, leaving bequests, and being alive (independent of consumption). For

tractability, we assume that household members are the same age such that a single age

suffices to characterize the household.

A household has one of the following family statuses (f): a couple, single woman, or

single man. Households enter the model as a couple initially and remain a couple until

retirement at age 65, so there is no divorce or widowhood. Also, we assume no use of LTC

before age 65 because of low likelihood.4 After age 65, survival and use of LTC become

uncertain, and couple households can become a single woman or single man household.

3.1 Preferences

The per-period CRRA utility functions of couples (C) and singles (S) are given by:

uC (c) = 2 ⋅ ( c
η)1−σ

1 − σ
+ b, and uS (c) = c1−σ

1 − σ
+ b, σ ≥ 0, 1 ≤ η ≤ 2, b ≥ 0,

where the parameter σ ≥ 0 reflects the level of risk aversion.

Following the literature (De Nardi et al., 2021), we allow couples to benefit from

economies of scale. Partners can pool their income and consume many goods jointly. η

determines the extent to which households benefit from economies of scale. η < 2 features

4At age 65, only 1% of the sample uses LTC.
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economies of scale: each couple member consumes c
η units while this would be c

2 < c
η if

the two do not share a household (Browning et al., 2013).

Following De Nardi et al. (2023), we introduce scaling parameter b > 0. This parameter

is crucial when examining the welfare implications of altered life expectancies because

households could attach value to the ‘invisible’ good of being alive that goes beyond

consuming and bequeathing, e.g., the happiness of being alive.5 In our model, risk-

averse households would reach higher utility when being dead because uS < 0 and uC < 0

and utility from death is zero. We assume that utility from being alive is higher, thus

calibrating a b yielding non-negative utility in any state when alive: uS ≥ 0 and uC ≥ 0.

The household derives utility B(a) from leaving bequest a. Following De Nardi (2004):

B(a) = φ

1 − φ

σ ⋅
⎛
⎝ φ

1−φ ⋅ ca + a
⎞
⎠
1−σ

1 − σ
if φ ∈ (0,1),

B(a) = c−σa ⋅ a if φ = 1 and B(a) = 0 if φ = 0, which De Nardi (2004) introduced to be

consistent with wealth concentration among the wealthiest households in the U.S.. ca is

the consumption level below which households, under perfect certainty, will not leave a

bequest (Lockwood, 2018). ca > 0 implies bequests to be luxury goods. If households’

wealth meets threshold ca, φ is the share of excess wealth spent on a bequest: higher φ

increases marginal utility from bequeathing relative to marginal utility from consuming.

3.2 Sources of Uncertainty

An important empirical artifact to be replicated is heterogeneity in asset holdings. A

source for heterogeneity is uncertainty, forcing households to make precautionary savings

(Carroll, 1997). We have uncertain health, family status, and income in our model.

Use of LTC and survival After age 65, exogenous health and family status shocks

occur. The health of the husband and wife, hm and hf , evolve jointly and can differ

between them (hm ≠ hf ). hm and hf take three values: a household member does not use

public institutional care (i = 1), uses public institutional care (i = 2), or is dead (i = 3).

5In the literature, this parameter is used to compute the Value of a Statistical Life, i.e., the price
that a population is willing to pay to prevent one certain death in the current period (see, e.g., Hall and
Jones, 2007; St-Amour, 2022). This statistic is outside the scope of our study.
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LTC use induces co-payments (out-of-pocket expenditures) m(y, a, hm, hf) that depend

on income (y) and assets (a); these are paid to the government. We assume that LTC

needs are homogenous across institutionalized individuals, so co-payments do not depend

on the severity of the need for care.

We assume a Markovian process, so transition probabilities depend on the health

and survival statuses of the preceding period: hm
t and hf

t . Survival status of a spouse

controls for the potential availability of informal care. Furthermore, the health transition

probability depends on lifetime income I and age t. Health transition probability π is:

πi,j
k,l(t, I) = P(hm

t+1 = k, hf
t+1 = l ∣ hm

t = i, hf
t = j, t, I) with: (i, j, k, l) ∈ {1,2,3}.

The death probability of the households is as follows:

πi,j
3,3(t, I) = P(hm

t+1 = 3, hf
t+1 = 3 ∣ hm

t = i, hf
t = j, t, I) with: (i, j) ∈ {1,2,3}.

Life-cycle income: age 25 to 65 Exogenous income shocks happen during working

life, reflecting the presence of labor supply shocks and health shocks. To save on the state

space, we assume that these income shocks occur at the household level. Following the

standard literature (Storesletten et al., 2004; French, 2005), household income dynamics

follow an AR(1) process:

yt = min(ỹt; y) (1)

ỹt = αt ⋅ exp(θ) ⋅ exp(ηt) ⋅ exp(εt)
ηt = ρ ⋅ ηt−1 + ut

θ ∼ N (0, σ2
θ); εt ∼ N (0, σ2

ε ); ut ∼ N (0, σ2
u); η24 = 0,

where yt is pre-tax household income, including income from labor, capital, and social

insurance. αt a deterministic age effect. θ is a fixed (labor) productivity effect. ηt is a

persistent shock. εt is a transitory shock, in part reflecting transitory health shocks. η24

is the initial level of the persistent income part. y is a government-provided income floor.

Life-cycle income: age 65 and older Households receive retirement income yt =
SS(f) +DB65(f) consisting of a part independent of the income history, SS, and a part

DB65, whose defined benefit formula depends on the income history {ys}64
s=25. Income
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depends on the family structure because it becomes a smaller survivor benefit upon

widowhood. Retirement income is stochastic due to random shocks in the income history

until age 65 and time-varying family status.

3.3 The Government

The government provides income and LTC insurance after retirement by providing a first

pillar pension and (partially) covering institutional care costs. Households pay mandatory

for this insurance via dedicated taxes τSS(y) and τL(y, f, t). Moreover, co-payments

m(y, a, hm, hf) finance LTC use. Lastly, households pay a general income tax τG(y, f, t).
We specify the functional forms of tax function τ in Appendix B.6. We specify m in

Section 4.

Government revenues and costs in the model do not necessarily balance, which we

ensure with additional lump-sum transfers TrSS and TrLTC . Appendix A.1 describes the

procedure for how the government sets these transfer levels.

3.4 Optimization Problem

The timing is as follows: at the beginning of the period, households observe their state

variables ℵ that are relevant to their decision-making. The household obtains interest

rate r on assets a, obtains income y, pays taxes τ and co-payments m, and makes the

government-balancing transfers Tr. Then, households ‘optimally’ consume or save the

remaining assets based on state vector ℵ. Lastly, a survival and LTC use shock hits. If

the final household member has died, any remaining assets go to the household’s heirs

(we assume households value their gross bequest and, therefore, ignore bequest taxes).

The state vector, ℵ , represents variables that are commonly observed by the household

at the beginning of each period t:

ℵ
W
t = (at, θ, ηt, εt,DBt, t)′ (if t < 65)

ℵ
R
t = (at,DB65, ft, h

m
t , h

f
t , t)′, (if t ≥ 65)

where after age 65, retirement income replaces stochastic income, and family status ft

and health statuses hm
t and hf

t become uncertain. DBt is the pension accrual until age t.
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Note that all variables are known before deciding consumption ct and next period’s

assets at+1, so we can recursively write the household’s problem. Denote β the subjective

discount factor. The household’s value function at age t is:

Vt(ℵWt ) = max
ct,at+1

uC(ct) + β ⋅ E[Vt+1(ℵWt+1) ∣ ℵtW ]. (if t < 65)

Vt(ℵRt ) = max
ct,at+1

uf(ct) + β ⋅ (1 − πi,j
3,3(t, I)) ⋅ E[V (ℵRt+1) ∣ ℵtR]

+ β ⋅ πi,j
3,3(t, I) ⋅ B(at+1), (if t ≥ 65)

subject to a budget constraint and no-borrowing constraint, defining next period’s assets:

at+1 = (1 + r) ⋅ at + yt − τG − τSS − τL − mt − TrSS − TrLTC − ct ≥ 0.

The dynamic optimization problem after age 65 is different due to health uncertainty.

A household survives into the next period with probability 1 − πi,j
3,3(⋅), and then faces

the optimization problem again (Vt+1). With probability πi,j
3,3(⋅), the household leaves a

bequest with utility flow B(at+1). Also co-payments for LTC use might occur (mt ≠ 0).

We discuss the numerical implementation in Appendix A.2 to A.4.

As will be later important for our counterfactual analyses, health hf
t and hm

t impact

the decision problem both via the utility function and budget constraint. The survival

probabilities are lower when using LTC, implying that future consumption is more heavily

discounted and households save less for future consumption. Health ambiguously affects

the decision problem via the co-payments. On the one hand, co-payments for LTC limit

the available budget for consumption, inducing the household to precautionary save. On

the other hand, a co-payment depends on assets and puts a penalty on saving.

4 Data and Estimation Procedure

For estimation, we use administrative data from Statistics Netherlands that is available

under restricted access. We can merge different data sets within the secured environment

based on a unique individual and household identifier. Data come from multiple sources

and registries: tax files (income and assets), municipal population registries (marital

status, gender, birth year, and age), and a registry on institutional care use and deaths.
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We use a two-step strategy similar to Gourinchas and Parker (2002) and De Nardi

et al. (2010) to estimate the unknown parameters of our life-cycle model. In the first step,

we estimate parameters directly from the data and denote them by χ. For example, we

estimate parameters for the health and income processes from the administrative data.

Without estimation, we tailor the pension and LTC use system to the Dutch setup 2006-

2014. In addition, we fix the risk aversion and interest rate to σ = 3 and r = 2%, values

commonly used and found in life-cycle studies (see, e.g., De Nardi et al., 2010).

Given the parameters and shock processes from the first stage, we apply the method

of simulated moments to estimate the remaining parameters. We minimize the sum

of squared differences between empirical and simulated moments of the asset distri-

bution. The parameters to estimate are the subjective discount factor, bequest util-

ity parameters, equivalence scale of consumption, and government-balancing transfers:

δ = (β,φ, ca, η,TrSS,TrLTC)′. After estimating all the parameters, we calibrate b, i.e., the

scaling parameter for the utility of surviving households.

4.1 First-Step Calibration and Estimation

Use of LTC and survival We estimate the health transition matrix using our sim-

ulated sample on household use of LTC from Section 2. We convert the life histories

from continuous time to discrete time (an age period of one year), and compute transi-

tion probabilities accordingly. LTC use is assumed to be used throughout the entire age

period and yearly costs the government e58,500 per user. The model is estimated using

daily reported deaths, institutional care use, and marital status between 2006 and 2014.

See Appendix B.1 for a detailed description of the data and a summary of the estimation

method, including the computation of lifetime income (quintiles).

Co-payments for LTC use In the Netherlands, households make a co-payment to

finance the use of LTC. The co-payment depends on the asset level a, household income

y, and health statuses hm and hf . Households pay a low-rate or high-rate co-payment

depending on the LTC used by the household members (hm and hf ). The low-rate co-

payment applies to couples with only one LTC user. The high-rate co-payment applies

11



to singles and households with two LTC users:6

m(y, a, ⋅)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max[1,900, min[9,800, 0.125 ⋅ (y + 0.04 ⋅ a)]]
max[0 , min[27,000, 0.75 ⋅ (yAT + 0.04 ⋅ a − 4,500)+]]

(low co-pay)

(high co-pay)

The main difference between the two co-payment types stems from the cap on co-

payments, e9,800 vs. e27,000, and the co-pay rate on income: 0.125 vs. 0.75. Also,

note that contrary to low-rate co-payments, high-rate co-payments depend on income

after taxes yAT = y − τG − τSS − τL. Lastly, 4% of the assets contribute to co-payments,

implying endogenous co-payments in the model. In 2013, a policy change imposed an

additional 8% of the assets to count for the co-payments. However, we stick to the 4%

because that spans most of our sampling window (2006-2014).

Life-cycle income: age 25 to 65 To estimate the income shock process (yt), we use

granular income data available for a representative sample of about 1% of the households

(the IPO sample). In this sample, we have information on the distinct categories that

comprise household income (the IPO sample), including taxes and private and public

pension benefits. The data are available for a longer period than the data for the health

processes: 2001-2014. A longer sampling window is indispensable when estimating the

persistence, i.e. longstanding effects, of income shocks.

We observe pre-tax income aggregated to the household level, including social transfers

and pension income. This income definition also includes taxes for first pillar pension

income and LTC provision, and a general income tax but excludes other dedicated taxes,

e.g., for unemployment insurance. We only include the income of the household head

and the partner (if applicable) and exclude the income of other household members. The

variables are normalized to base year 2015 with the Consumer Price Index.

To abstract from early retirement decisions and schemes, we restrict our sample to

couples whose oldest member is born after 1949 and whose primary income source is

not retirement income. Further, we only include income above the government-provided

6We keep the formula simple for computational reasons, but the system is more complex in practice.
Income and assets are measured with a two-year lag, implying we would have two additional state
variables in our model. A low co-pay rate applies for the first four months of an institutional stay, which
we cannot measure with our model specified at the year level instead. Also, there is an asset exemption of
about e21,000 and e42,000 for singles and couples, but we follow Wouterse et al. (2021) and (partially)
replace this with a general exemption of 0.75× e4,500 for the high co-payment.
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safety net (welfare level): y > y = e15,600 (2010-level). y is a government-provided

income floor, equivalent to a consumption floor, as in, e.g., De Nardi et al. (2023).

We follow Storesletten et al. (2004) for the estimation of the income shock process. We

estimate the age effect αt and productivity effect θi by running a fixed effects regression

of log income on age dummies (one for each log(αt)) and a household fixed effect (θi):

log(yit) = log(αt) + θi + ηit + εit, (2a)

where i indexes a household and t the age of the oldest household member.

Ideally, our household-specific estimate θ̂i excludes birth year effects. To wash out

present cohort effects, we run the following OLS regression of the predicted productivity

effects on birth year dummies (cf. French, 2005; De Nardi et al., 2023):

θ̂i = c + θc + θ̃i, c ∈ {1951, ..,1990}, (2b)

where c is the cohort effect of birth year 1950, c + θc is the cohort effect for birth years

1951-1990, and residual θ̃i is the household productivity effect excluding a cohort effect.

We use θ̃i as the household-specific productivity effect.7

Next, we estimate the parameters of the income shock θi + ηit + εit: ρ, σθ, σu, and σε.

To this end, we construct the empirical auto-covariance matrix of the predicted residuals

of θ̃i + ηit + εit from (2a) and (2b), and match them to the auto-covariances implied by

equation (1). Appendix B.4 further explains the GMM procedure and shows the fit.

Table 2: Parameters of the AR(1) Income Process

Parameter: ρ σθ σu σε

0.966 0.184 0.131 0.166
(0.004) (0.028) (0.008) (0.003)

Estimates for married households whose oldest member is younger than
age 65 and born after 1949. Data from IPO 2001-2014: 77,118 households
and 534,006 panel-year observations. Standard errors in parentheses.

Table 2 provides the results on the income shock. The estimated parameters align

with results in the literature (Storesletten et al., 2004; Karahan and Ozkan, 2013; Blundell

et al., 2015; Paz-Pardo and Galves, 2023). This also holds for the high income persistence

ρ = 0.966 we estimate: income shocks have longstanding effects.

7Appendix B.3 shows the model estimates for the age profile {c + log(αt)}64t=25.
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Life-cycle income: after age 65 In the Netherlands, first pillar pension income is

independent of income history {ys}64
s=25 but linked to minimum wage w. For couples, the

benefit level is minimum wage (SS = w). For singles, the benefit level is 70% of the

couple’s benefit (SS = 0.7w). As minimum wage we take the 2010-value: w = e18,240.

A household in the model is also entitled to a second pillar pension benefitDB65, which

is linked to the history of income shocks {ys}64
s=25. In practice, the first and second pillar

aim to replace about 75% of the average individual-earned income or obtained disability

insurance income (Knoef et al., 2017).8 We assume the same replacement rate and benefit

formula at the household level. The second pillar pension income is only accrued over the

income yt that exceeds 100
75 ⋅ SS because social security benefits are sufficient to replace

the income below this level. The evolution of the second pillar pension benefit is:

DBt+1 = DBt + 1

40
⋅ 0.75 ⋅ min(yt − 100

75
⋅ SS ; 0) if t ≤ 64,

where the factor 1
40 makes sure we take a 40-year average of pre-tax household income.

Together, first and second pillar pensions compose income after retirement (t ≥ 65):

yt(DB65, f) = yt({ys}64
s=25, f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w + DB65, if f = couple

0.7w + rrw ⋅ DB65, if f = single woman

0.7w + rrm ⋅ DB65, if f = single man.

If a spouse dies, rrw and rrm convert a couple’s pension benefit into a widow(er)’s pension

benefit. Using the IPO data, we find rrm = 0.93 (SE: 0.001) and rrf = 0.55 (SE: 0.005).

In line with our earlier work van der Vaart et al. (2020), we report rrm > rrf implied by

that men were the prime earner in the households and pension benefits mostly accrued

to them. Appendix B.5 contains the estimation details.

A crucial variable in our model is lifetime income quintile I, which determines the

health risks after retirement. We take DB65 as the model-equivalent level of lifetime

income, which is exogenous because households do not decide on labor supply. Con-

sequently, we can compute the quintiles of the distribution of DB65 without running

the life-cycle model. Next, when running the life-cycle model, we use the quintiles and

realization of DB65 to assign households a lifetime income quintile group.

8We keep the formula simple for computational reasons, but the system is more complex in practice.
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Taxation We estimate the tax function τSS(y), τL(y, f, t) and τG(y, f, t) by regressing

observed tax amounts in the IPO on household income according to a log-linear and

sigmoid specification. We apply non-linear least squares estimation and estimate the

functions separately for households below and above age 65 and for single and married

households. Appendix B.6 reports the specifications and estimates.

Remaining calibrations Table 3 displays the remaining first-stage parameters.

Table 3: Other First-Step Parameters

Symbol: Value: Source:

Relative risk aversion σ 3 Several empirical studies1

Interest rate r 0.02 The average interest rate on
savings 2006-20142

First pillar pension benefit w e18,240 2010-level
Yearly LTC cost per user (e) LTCcost e58,500 van Ooijen et al. (2015)

1 See estimates by Cagetti (2003); De Nardi et al. (2010); Lockwood (2018)
2 See DNB Statistics (2023): https://www.dnb.nl/statistieken/dashboards/rente/, [August 7, 2023]

4.2 Second-Step Estimation

In this step, we apply the method of simulated moments (MSM) estimation to match

asset moments in the administrative data with moments simulated with the life-cycle

model (see, e.g., De Nardi et al., 2010; Lockwood, 2018; De Nardi et al., 2021). Using our

estimated first-stage parameter vector χ, we try to find preference vector δ ∈ Δ that yields

model-generated asset profiles that ‘best match’ observed asset profiles. The matching

happens according to standard generalized method-of-moments (GMM) techniques.

For the empirical moments, we use the same population and lifetime income quintiles

that we used to compute the health process in Section 2, i.e., households whose mem-

bers are aged older than 65 and were married at age 65. Following seminal work on

the elderly’s asset holdings (De Nardi et al., 2010; Ameriks et al., 2020; Nakajima and

Telyukova, 2023), we take net worth as our measure of wealth. This is the total assets

reduced by mortgages and other debt. Total assets are defined as the sum of the values

of checking and savings accounts, risky assets (stocks and bonds), business wealth, the

owner-occupied house, other real estate, and other assets such as cash-on-hand. The
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value of risky assets is normalized with the Amsterdam Exchange close index (AEX) on

31/12/2014, the owner-occupied house and other real estate with the house price index

(base 2015), and debt and amounts deposited in checking and savings accounts with the

Consumer Price Index (base 2015).

To prevent an overly complex model, we do not separately treat financial wealth and

net housing wealth, i.e., the total value of real estate minus outstanding mortgage debt.

The co-payments are, however, based on financial wealth and exclude housing wealth in

practice. We assume that households liquidate their housing wealth (sell their house)

once they enter a public care institution. Hence, net worth and financial assets coincide.

We base our estimator on the age profile of the median net worth of married and single

individuals between ages 65 and 100 by lifetime income quintile I, implying 2×36×5 = 360

moment conditions. We do not consider matching means (cf. De Nardi et al., 2010)

because these empirical moments are sensitive to outliers, thereby driving estimation

results. Furthermore, we restrict the analysis to matching the asset distribution after age

65 because our studied welfare effects primarily occur after this age.

However, akin estimating the income processes before age 65, we must first deal with

cohort effects to observed asset profiles. We similarly account for this as specifications

(2a) and (2b) do for the income process. To stay as close as possible to the 1950 cohort for

which we estimated the income process, we made the assets representative for a reference

group of households born between 1945 and 1949. Appendix B.7 provides details about

how we econometrically deal with the cohort problem of assets.9

We compute the moments also for our simulated sample and compare them with the

data moments using the objective function:10

K=360∑
k=1

[(Md
k − M s

k(χ̂,δ))2] ,
9The regressions involve the logarithm of assets, so we only keep non-negative assets. Furthermore,

the regression is prone to outliers, so we drop assets above e2,500,000. We drop 0.9% of the households
and 2.6% of the panel-year observations because of these restrictions.

10Instead of matching medians directly, existing work (e.g. Cagetti, 2003) looks at how many households
in the observed population have assets below the simulated median, which is ideally 50%. This means that
at each iteration, we would have to use our administrative data to determine how many individuals have
assets below the group-specific simulated median, which is computationally expensive. That condition
and our condition are equivalent at the true value δ so we choose our current approach.
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with K = 360 moments, and where Md
k and M s

k are the k-th data and simulated moment.

Our estimator δ̂ minimizes this quadratic distance between the empirical and sim-

ulated data moments. We do not weight each moment with an asymptotically optimal

weight matrix, implying we have less efficient estimates. Instead, efficient estimates would

follow from taking the densities evaluated at the median as weights (Powell, 1994), but

estimating these weights is computationally too expensive.11

The procedure can be summarized as follows. We first estimate asset profiles from

the administrative data. Second, we estimate the unknown parameters for the first stage.

Then, we take the first-stage calibrations χ̂ and a given parameter value δ̃ and run the

life-cycle model. We store the decision rules of the life-cycle model. We know the steady-

state distribution of individuals over the state variables and can compute the simulated

asset moments from that (see Appendix A.4 for the computation of the distribution).

Hereafter, the value of the objective function is computed. Lastly, we compute a new

‘optimal’ preference vector using a Gauss-Newton regression and repeat the procedure

until parameter vectors of two consecutive iterations are arbitrarily close. See Appendix

C.1 for the computation of the standard errors.

Lastly, we calibrate b, a crucial parameter when examining the welfare implications

of shortening and extending lifespans (cf. Hall and Jones, 2007). Our additive speciation

implies that b does not depend on the consumption and saving decision, so we do not

have to jointly estimate this parameter with the other preference parameters, but rather

calibrate it conditionally upon them. We tailor the parameter to the group that has

the lowest-per-period utility in our population: retired singles without private pensions

(DB65 = 0). We set b = − c1−σ

1−σ = 0.3114, where c = 0.7w = e12,768 is their consumption

level (in 0000s e) and implying this group has zero utility from consumption. In a similar

spirit, De Nardi et al. (2023) used an estimated consumption floor to pinpoint b. Because

we tailor b to the lowest consumption level, our estimated welfare gains from living longer

will be a lower bound to the true effect.

11We also tried inverse-variance weighting (cf. Altonji and Segal, 1996). However, this implied non-
sensible estimates as there are extremely large weights for low compared to high lifetime income quintiles.
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4.3 Model Identification

β is identified by the shape of the age profile on assets: higher β implies a stronger

preference for future consumption and thus more saving. In addition, the Euler equation

provides intuition for the identification of preference parameters on bequests φ and ca,

and equivalence scaling η in our model. To see how this works for η, suppose a simple

model without bequests of a married household in period t, that will be not be married

in period t+ 1 anymore. If the sole uncertainty is death, then the Euler equation implies

the following consumption growth:

log(cSt+1
cMt

) = log (cSt+1) − log (cMt ) = − log(η) + 1

σ
⋅ (log(β) + log(1 − π3,3) + log(R) − log(2)) ,

where cSt+1 is consumption when single, and cMt is consumption when married. Here, higher

η (less economies of scaling) implies more consumption spending cMt when married, so

lower savings when married. Hence, we identify η by comparing asset levels of married

and single households of a given lifetime income quintile at two consecutive ages.

Also, the Euler equation shows a complication when having to estimate β and σ. Their

joint effect on savings would be 1
σ ⋅ log(β), making it impossible to separately identify the

two when studying a given asset level. Therefore, we follow Ameriks et al. (2011) and fix

σ = 3, a value common in retirement-savings literature (e.g. De Nardi et al., 2010).

Lastly, to see how the bequest parameters are identified, we consider a single household

that knows to die next period, does not subjectively discount utility from consumption

c, and obtains utility from leaving a bequest a (ca > 0 and φ ∈ (0,1)). Assume that the

household has cash-on-hand μ, then the decision problem is:

max
c,a

uS(c) + B(a) = max
c,a

c1−σ
1 − σ

+ b + φ

1 − φ

σ ⋅
⎛
⎝ φ

1−φ ⋅ ca + a
⎞
⎠
1−σ

1 − σ
, s.t. μ = a + c.

The Euler equation with bequests is:

c−σ = φ

1 − φ

σ ⋅ ⎛
⎝

φ

1 − φ
⋅ ca + a

⎞
⎠
−σ
, s.t. μ = a + c →

c = ca + (1 − φ) ⋅ μ and a = φ ⋅ (μ − ca),
so in optimum households equate the marginal utility from bequests and consumption.
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Increasing ca one-to-one increases consumption c, and one-to-one decreases the be-

quest size a. ca is thus a terminal wealth level that must be met before a household

intends to leave a bequest (bequests are luxury goods).12 The likelihood of meeting this

criterion is larger for higher lifetime income quintiles, from whose terminal assets we iden-

tify ca. Furthermore, φ is the share of excess wealth they leave as a bequest. We identify

φ by comparing the steepness of the asset profile for this group with μ > ca compared to

the groups with insufficient wealth μ ≤ ca, i.e. groups with low lifetime income.

5 Second-Step Estimation Results

Figure 1 shows the empirical and simulated moments for our closest match. For exposi-

tion, we connect the moments with a line. Overall, we have a reasonable fit: we match the

positive correlation between the level of assets and lifetime income quintile and the asset

decumulation pattern after age 65. We also mimic the empirical artifact that households

in the top income quintile die with substantial assets, i.e., leave a bequest. Our model is

less capable of matching the low asset holdings for the bottom and second income quintile,

which could be explained by that these groups contain relatively many hand-to-mouth

consumers and have lower discount rates (Cherchye et al., 2023). However, introducing

heterogenous preferences would make it less clear where a welfare redistribution stems

from and abstracts from the standard in the retiree’s saving literature that we stick to,

i.e. a parsimonious model with homogenous preferences (De Nardi et al., 2010; Ameriks

et al., 2020). Yet, the general picture of asset profiles seems to be reproduced by our

MSM estimation, making us confident in using our estimated life-cycle model for further

inference.

12In the model, the survival probability is below unit value, so ca refers to annuitized cash-on-hand
rather than the level of cash-on-hand.
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Table 4 presents the results of our preference parameter estimation. We estimate

β̂ = 0.960, implying that households have a moderate preference for current over future

consumption. The estimated bequest utility indicates a strong saving motive, where

bequests are luxury goods (ĉa = 40,672 > 0). We find the extreme case of φ̂ = 1, implying

a linear bequest function, and all excess wealth is put into a bequest and not consumed.

A high bequest propensity (φ > 0.88) is common in the revealed preferences literature

(De Nardi et al., 2010; Lockwood, 2018; De Nardi et al., 2023), while the stated preference

literature finds lower values (φ̂ > 0.48, see, e.g. Ameriks et al., 2020). Our threshold

consumption level ĉa= 40,672 is close to De Nardi et al. (2010), who report ĉa= 34,000

and slightly higher than other related studies (Lockwood, 2018; De Nardi et al., 2023).

Table 4: Estimated Structural Parameters

Discount factor Bequest utility Equivalence scale Government transfers
β ca φ η TrSS TrLTC

0.960 40,452 1.000 1.145 783.58 -433.05
(0.00002) (1.03844) (0.00054) (0.00010)

*p < 0.1, **p < 0.05, ***p < 0.01. Standard errors in parentheses. The data contain 1,471,858
households and 11,471,725 panel-year observations.

We find an equivalence rate of η̂ = 1.146, which is lower than the commonly applied

and estimated OECD-modified equivalence scale of 1.5 (for the life-cycle model estimate,

see, e.g., De Nardi et al., 2021). Lower equivalence scales are, however, also reported

in the consumption-expenditure literature (see, e.g., Donaldson and Pendakur, 2004).

Using the Euler equations from Section 4.3, our model predicts more savings than would

be predicted if we take the OECD-modified equivalence scale η = 1.5. Hence, households

in the Netherlands have relatively high economies of scale, implying they can save more.

The additional tax for singles to balance the government budget is T̂r = T̂rSS + T̂rLTC =
783.58 − 467.26 = e316.32 (for couples, this is double the amount). This consists of

an additional tax to finance the first pillar pension (T̂rSS > 0) and a subsidy to finance

the LTC system (T̂rLTC < 0). Given the low amounts we are talking about, we can

think of these transfers reflecting measurement error due to calibration of the first-stage

parameters.
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6 Welfare Gain due to lower LTC use and Mortality

In this section, we closely follow De Nardi et al. (2023) and use the estimated life-cycle

model to quantify the welfare gain arising from socioeconomic differences in LTC use and

mortality (cf. Table 1). In the first step, we compute the monetary gain for any lifetime

income quintile by counterfactually assigning them the health risks of the lowest lifetime

income quintile. Besides, we evaluate the total welfare gain with a Willingness-To-Accept

(WTA) metric that includes a non-monetary gain linked to reaching higher utility: the

compensated consumption equivalence. As a final step, we utilize the unique feature of

life-cycle models that allows us to quantify the extent to which saving for a bequest and

the existence of LTC co-payments contribute to the observed WTAs.

6.1 Counterfactual Analyses

At age 65, households draw an LTC use and mortality risk profile that depends on

their lifetime income quintile, denote this baseline scenario by BS. We also have a

counterfactual scenario, denoted by CF , where each household draws the health risks of

the lowest lifetime income quintile, so health risks are homogenous. The counterfactual

implies that higher lifetime income quintiles live shorter, so have lower lifetime retirement

income, and have higher lifetime LTC use, so have higher lifetime co-payments for LTC.

Furthermore, lifetime co-payments will be different under the counterfactual due to the

endogeneity of assets. Lastly, lifetime government-balancing transfers will be different

due to lower longevity and because we will re-calibrate T̂rSS and T̂rLTC to also match the

government budget under the counterfactual.

We compute the net present value of retirement income net of co-payments and

government-balancing transfers and take the difference between baseline and counter-

factual scenarios as the monetary gain from heterogeneous health risks. We do this for

each lifetime income quintile separately. In concordance with LTC use and mortality

risk starting, we measure the net present value at age 65. For the two cases, denote

with yBS(ℵt) and yCF (ℵt) the net incomes for a household aged t ≥ 65 with state vector

ℵt. Denote E65(yBS(ℵt)) and E65(yCF (ℵt)) their expected values measured when the
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household is 65. These expectations are unconditional upon survival after age t ≥ 65

and thus include differential mortality. The difference E65(yBS(ℵt))−E65(yCF (ℵt)) is the

contribution of age t to the monetary gain, and the expected lifetime income gain is the

sum of the age-specific gains:

100∑
t=65

E65(yBS(ℵt)) − E65(yCF (ℵt))
(1 + r)t−65 , (Monetary gain)

where we deflate the income stream to age 65 with an interest rate of r = 0.02. Apart

from this level estimate, we will decompose the monetary gain into parts stemming from

pension income, LTC co-payments, and government transfers.

Because our counterfactual affects consumption decisions, and bequest decisions, and

the utility of life expectancy, we follow De Nardi et al. (2023) and adopt the compen-

sated consumption equivalence λc as a measure of the welfare gain. This measure is

the minimum percentage points increase in counterfactual consumption that a house-

hold requires to prefer (accept) the ‘worse’ counterfactual over the baseline case, hence a

Willingness-To-Accept (WTA).

Formally, the expected lifetime utility at age 65 in the baseline scenario, value function

V BS
65 , is defined as:

V BS
65 ∶= 100∑

t=65
β̂t−65 ⋅ {E65 (u(cBS

t (ℵt))) + β̂ ⋅ E65 (B(aBS
t+1(ℵt)))}

= 100∑
t=65

β̂t−65 ⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E65

⎛⎜⎜⎝(1 + �(ℵt)) ⋅ ( cBS
t (ℵt)
η̂(ℵt) )1−σ

1 − σ
+ b

⎞⎟⎟⎠ + β̂ ⋅ E65 (ĉa−σ ⋅ aBS
t+1(ℵt))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

which is the sum of expected lifetime utility from consumption and bequeathing. cBS
t and

aBS
t+1 are optimal consumption and a bequest at age t and t + 1 for a household endowed

with state vector ℵt. Note bequest utility is linear in assets because we estimate φ̂ = 1.

Similarly, we determine the optimal consumption cCF
t , bequests aCF

t+1 , and value func-

tion V CF for the counterfactual case:

V CF (λc) ∶= 100∑
t=65

β̂t−65 ⋅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E65

⎛⎜⎜⎝(1 + �(ℵt)) ⋅ ( (1+λc)⋅cCF
t (ℵt)

η̂(ℵt) )1−σ

1 − σ
+ b

⎞⎟⎟⎠ + β̂ ⋅ E65 (ĉa−σ ⋅ aCF
t+1(ℵt))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

We find WTA λc by solving: V CF (λc) = V BS
65 . Without compensating (λc = 0), we expect

less lifetime utility in the counterfactual scenario: V CF (0) < V BS
65 . Because the utility
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is increasing in consumption, we have ∂V CF (λc)
∂λc

> 0, and thus require λc > 0 to have

V CF (λc) = V BS
65 . λc > 0 represents the welfare gain: the closer this number is to zero,

the smaller the welfare gain for the lifetime income quintile. Due to different deflation,

we cannot directly compare λc to the monetary gain within a lifetime income quintile:

monetary gains are obtained by using discount factor 1
1+r , while λc is obtained by using

discount factor β̂ < 1
1+r .

In a final step, we look at the impact of LTC co-payments and saving for a bequest

on the WTA. To this end, we one-by-one remove LTC co-payments and saving for a

bequest (φ = 0) for the baseline case and recompute optimal cBS
t and aBS

t+1, so V BS
65 . For

the counterfactual, we keep cCF
t and aCF

t+1 fixed and find λc that solves V CF (λc) = V BS
65 .

6.2 Results

The first two lines in Table 5 show the average gain in lifetime income if health risks

differ by lifetime income quintile, i.e., higher lifetime income quintiles use less case and

live longer. The pecuniary gain per income group reveals a gradient favoring higher life-

time income quintiles. However, this result is incomplete because higher lifetime income

quintiles by construction have higher absolute gains due to higher yearly income. To back

out these level effects, the second row shows the gain relative to group-specific lifetime

income under the counterfactual. The result confirms the gradient: the gain is −0.2% for

the bottom income group and 11.0% for the top income group, a difference of 11.2pp..

When discussing welfare gains, we prefer the first-differenced estimate of 11.2pp.,

which accounts for the fact that bottom income groups, despite unchanged health risks,

still loss or gain welfare under the counterfactual. The bottom income group namely

loses 0.2% of lifetime income due a re-calibration of T̂rSS and T̂rLTC. This gain is not

directly linked to differences in health and is common to all income groups, and therefore

we prefer the first-differenced estimate of 11.2pp..

With shares over 90%, we see that pension income is the largest contributor to the

pecuniary gain for a lifetime income quintile. The role of LTC co-payments is non-

negligible for the highest lifetime income quintile and explains 10.6% (e10,878) of their

pecuniary gain. As a side-remark, the co-payments make up a small yet negative share
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for the second lifetime income quintile because their baseline LTC use is higher than

under the counterfactual (see Table 1).

Table 5: Monetary and Welfare Gains Due To Socioeconomic Differences in LTC Use and
Mortality: Levels and Decomposition

Lifetime income quintile Bottom Second Third Fourth Top ΔTop-Bottom

Monetary gain (e) -917 14,075 26,864 49,812 102,474 103,391
Monetary gain1 (%) -0.2 3.2 5.2 8.0 11.0 11.2

Contribution to monetary gain2 (%)
Pension income 0.0 112.2 103.3 96.8 91.3 -
Co-payments 0.1 -2.8 2.3 6.8 10.6 -
Government transfers Trx 99.9 -9.4 -5.6 -3.5 -1.9 -

Willingness-To-Accept: λc × 100% -0.2 0.8 2.9 7.9 23.2 23.4
No bequests (φ = 0) -0.5 0.1 1.7 4.9 0.7 1.2
No co-payments 2.4 3.6 5.6 10.4 24.2 21.8
No co-payments and bequests 2.3 3.4 5.1 8.7 3.3 1.0

1 Expressed as a percentage of counterfactual lifetime income after age 65
2 Gain of the particular income source in es as a share of the monetary gain in es (first row)

The WTA confirms higher welfare gains for higher lifetime income quintiles, but what

explains the gap of 23.4pp.? If we assume away saving for a bequest, the gap in welfare

gain (WTA) between the top and bottom lifetime income quintiles shrinks from 23.4pp.

to 1.2pp.. Hence, higher lifetime income quintiles benefit less from higher longevity and

lower LTC use if they cannot save for a bequest. Their welfare gain dropped from 23.2%

to 0.7% because they will not spend the additional lifetime income on their otherwise

highly-valued bequests. On the contrary, lower lifetime income quintiles experience a

much smaller drop in welfare gain because they value leaving bequests –luxury goods–

much less. As a result, the difference in welfare gain between the top and bottom lifetime

income quintile shrinks tremendously.

On the other hand, the gap between the top and bottom income groups remains a

considerable 21.8pp. when we leave out LTC co-payments. Differences in co-payment

duration are thus less important than a bequest to explain the excess welfare gain of

the top lifetime income quintile. The gap remains large because LTC co-payments are a

relatively small share of lifetime income gains (Row 4, Table 5). Moreover, higher lifetime
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income quintiles still receive the additional retirement income, which they can spend on

–for them valuable– bequests.

Note that if we abolish LTC co-payments in the baseline scenario, any group experi-

ences a welfare gain, which is good from a social planner’s perspective. While their risks

are not altered, the bottom lifetime income quintile has a welfare gain 2.4% because LTC

co-payments are replaced by a higher transfer (tax) T̂rLTC that is paid unconditionally

upon LTC use. Lower socioeconomic groups can spend the otherwise co-paid resources

on consumption, while the same is true for the higher socioeconomic groups who can

additionally spend it on for them valuable bequests.

If we simultaneously assume away saving for bequests and LTC co-payments, we find

welfare gains that are in between the cases of singling out only one of the two channels.

In line with the evidence above, for lower lifetime income quintiles, the gain is closest to

the case of singling out LTC co-payments only. In comparison, for higher lifetime income

quintiles, the case is closer to singling out bequests only, as these are more valuable for

them.

7 Discussion and conclusion

We evaluate the welfare gain that Dutch households with higher lifetime income experi-

ence due to using less long-term care (LTC) and living longer. To this end, we estimated

a life-cycle model on singles and couples’ consumption and saving behavior, including

idiosyncratic risks on income, LTC use, and mortality. We calibrated the model to match

Dutch administrative data on asset holdings from 2006-2014. Using the estimated model,

we conducted three counterfactual experiments to quantify and explore possible channels

of the welfare gain: (1) assign each household the LTC use and mortality risk of the

bottom lifetime income quintile, (2) additionally remove a preference for bequest saving,

and (3) replace co-payments for LTC with a fixed tax that is paid unconditionally upon

using LTC.

Our findings highlight a sizeable excess welfare gain of 23.4pp. higher consumption

for the highest lifetime income quintile if their health follows the true process rather than
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the counterfactual one. The large welfare gain for the top lifetime income quintile can

almost exclusively be attributed to their preference for leaving bequests: the welfare gain

reduces to 1.2pp. if households would not hold a preference for bequest saving. Our

ranking exercise shows that LTC co-payments are less important when explaining the

excess welfare gain: the gap remains 21.8pp..

The estimated welfare effects should be interpreted as a lower bound estimate because

we calibrate the utility of remaining life-expectancy b at the lower end of possible values.

This seems a sensible choice as Hall and Jones (2007) show that lower values of b better

match healtcare expenditures in the U.S.. Yet it must be said that, in line with Hall and

Jones (2007) and our own computations (not shown), the estimated welfare effects are

sensitive to higher choices of b.

In line with our findings, earlier work emphasized that modeling the bequest saving

motive is crucial for understanding the asset holdings (welfare) of the income- and asset-

rich (De Nardi et al., 2010). However, earlier work is primarily conducted in the U.S.,

where public LTC provision is less generous: savings data alone need not separately

identify precautionary and bequest motives because wealthier households simultaneously

save assets for both uses (Dynan et al., 2004). Our study is one of the first attempts

to estimate the bequest saving motive in a country where precautionary saving is less

important, and thus saving data alone could suffice. From our findings, we conclude

that the estimated preference for bequest saving seems consistent across countries and

estimation strategies.

For policy design, we can conclude that higher taxes on bequests could be a way to

(partially) introduce more ‘actuarial fairness’ into the system of old-age social insurances.

Also, lower lifetime income quintiles do not necessarily have a worse deal from abolishing

co-payments for LTC. Yet, it must be said that such policy intervention will also not

close the gap with the highest lifetime income quintile tremendously. Furthermore, co-

payments works out differently in another country because co-payments are relatively low

in the Netherlands (OECD, 2023). Along the spectrum of possible policy interventions,

having social security benefits tailored to the career length is another way to increase ac-
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tuarial fairness because the working life of shorter-living (lower) lifetime income quintiles

usually starts at younger ages. While our findings opt for those kinds of policies, we keep

the quantitative importance of these alternative policy proposals and their interaction

with heterogenous mortality and LTC use as a fruitful area for future work (see Bagchi

(2019) for an example involving differential mortality only).

Looking at policy reforms would make the working age stage more salient than it

is now. In the current setup of studying health differences, we primarily use this life-

cycle stage to close the government budget. Alternatively, focusing on bigger reforms

to the social insurance system increases the relevance of precautionary saving, which

already happens during working age. Furthermore, the comparison of alternative systems

implicitly compares different contributory schemes, and these contributions mostly occur

during working age.

Our analysis could be extended in another number of directions in future work. First,

when assessing different retirement policies, we might have to extend the life-cycle model

with endogenous health and labor supply decisions and health-dependent utility (cf.

French, 2005; Finkelstein et al., 2009). In our specification, we pursue parsimony and

thus treat health as exogenous and do not model labor supply explicitly. That does not

mean we entirely ignore these variables; the income risk reflects them and, therefore life-

time income status at age 65. Second, future research could seek to estimate the effects of

changing the LTC insurance system besides the co-payments. In doing so, we can assess

whether our studied welfare gains are larger in a system with exclusively private LTC

insurance (saving) or a mix of public and private LTC insurance. Lastly, future research

can include other behavioral frictions that likely matter for evaluating of the impact of

bequests. The typical frictions that one can think of are taxes on bequests, taxes on

capital gains, and trade-offs between leaving bequests and inter-vivos transfers (gifts),

which are not part of our model.

28



References

Altonji, J. G. and Segal, L. M. (1996). Small-Sample Bias in GMM Estimation of Co-
variance Structures. Journal of Business & Economic Statistics, 14(3):353–366.

Ameriks, J., Briggs, J., Caplin, A., Shapiro, M. D., and Tonetti, C. (2020). Long-term-
care utility and late-in-life saving. Journal of Political Economy, 128(6):2375–2451.

Ameriks, J., Caplin, A., Laufer, S., and van Nieuwerburgh, S. (2011). The joy of giving or
assisted living? Using strategic surveys to separate public care aversion from bequest
motives. The Journal of Finance, 66(2):519–561.

Arellano, M. (2003). Panel Data Econometrics. Oxford University Press, Oxford (United
Kingdom).

Auerbach, A. J., Charles, K. K., Coile, C. C., Gale, W., Goldman, D., Lee, R., Lucas,
C. M., Orszag, P. R., Sheiner, L. M., Tysinger, B., Weil, D. N., Wolfers, J., and Wong,
R. (2017). How the growing gap in life expectancy may affect retirement benefits and
reforms. NBER Working Papers no. 23329, National Bureau of Economic Research.

Bagchi, S. (2019). Differential mortality and the progressivity of social security. Journal
of Public Economics, 177:104044.

Bakx, P., Van Doorslaer, E., and Wouterse, B. (2023). Long-term care in the Netherlands.
NBER Working Papers no. 31823, National Bureau of Economic Research.

Barczyk, D. and Kredler, M. (2018). Evaluating long-term-care policy options, taking
the family seriously. The Review of Economic Studies, 85(2):766–809.

Bernheim, B. D. (1987). The economic effects of social security: toward a reconciliation
of theory and measurement. Journal of Public Economics, 33(3):273–304.

Bhattacharya, J. and Lakdawalla, D. (2006). Does Medicare benefit the poor? Journal
of Public Economics, 90(1):277–292.

Blundell, R., Graber, M., and Mogstad, M. (2015). Labor income dynamics and the
insurance from taxes, transfers, and the family. Journal of Public Economics, 127:58–
73.

Bosworth, B., Burtless, G., and Zhang, K. (2016). Later retirement, inequality in old
age, and the growing gap in longevity between rich and poor. Economic Studies at
Brookings.

Braun, R. A., Kopecky, K. A., and Koreshkova, T. (2017). Old, sick, alone, and poor:
a welfare analysis of old-age social insurance programmes. The Review of Economic
Studies, 84(2):580–612.

Browning, M., Chiappori, P.-A., and Lewbel, A. (2013). Estimating consumption
economies of scale, adult equivalence scales, and household bargaining power. The
Review of Economic Studies, 80(4 (285)):1267–1303.

Cagetti, M. (2003). Wealth accumulation over the life cycle and precautionary savings.
Journal of Business & Economic Statistics, 21(3):339–353.

29



Carroll, C. D. (1997). Buffer-stock saving and the life cycle/permanent income hypothesis.
The Quarterly Journal of Economics, 112(1):1–55.

Cherchye, L., Demuynck, T., De Rock, B., Kovaleva, M., Minne, G., Perea, M. D. S.,
and Vermeulen, F. (2023). Poor and wealthy hand-to-mouth households in Belgium.
Review of Economics of the Household.

Chetty, R., Stepner, M., Abraham, S., Lin, S., Scuderi, B., Turner, N., Bergeron, A., and
Cutler, D. (2016). The association between income and life expectancy in the United
States, 2001-2014. JAMA, 315(16):1750–1766.

De Nardi, M. (2004). Wealth inequality and intergenerational links. The Review of
Economic Studies, 71(3):743–768.

De Nardi, M., French, E., and Jones, J. B. (2010). Why do the elderly save? The role of
medical expenses. Journal of Political Economy, 118(1):39–75.

De Nardi, M., French, E., and Jones, J. B. (2016). Medicaid insurance in old age.
American Economic Review, 106(11):3480–3520.

De Nardi, M., French, E., Jones, J. B., and McGee, R. (2021). Why do couples and singles
save during retirement? Household heterogeneity and its aggregate implications. NBER
Working Papers no. 28828, National Bureau of Economic Research.

De Nardi, M., Pashchenko, S., and Porapakkarm, P. (2023). The lifetime costs of bad
health. Review of Economic Studies (forthcoming).

Deaton, A. (2002). Policy implications of the gradient of health and wealth. Health
Affairs, 21(2):13–30.

Donaldson, D. and Pendakur, K. (2004). Equivalent-expenditure functions and
expenditure-dependent equivalence scales. Journal of Public Economics, 88(1):175–
208.

Dynan, K. E., Skinner, J., and Zeldes, S. P. (2004). Do the rich save more? Journal of
Political Economy, 112(2):397–444.

Fehr, H., Kallweit, M., and Kindermann, F. (2013). Should pensions be progressive?
European Economic Review, 63:94–116.

Finkelstein, A., Luttmer, E. F. P., and Notowidigdo, M. J. (2009). Approaches to estimat-
ing the health state dependence of the utility function. American Economic Review,
99(2):116–121.

French, E. (2005). The effects of health, wealth, and wages on labour supply and retire-
ment behaviour. The Review of Economic Studies, 72(2):395–427.

Goda, G., Shoven, J., and Slavov, S. (2011a). Differential Mortality by Income and Social
Security Progressivity. In Explorations in the Economics of Aging, volume 5, pages 189
– 204. University of Chicago Press, Chicago.

Goda, G. S., Golberstein, E., and Grabowski, D. C. (2011b). Income and the utilization
of long-term care services: evidence from the social security benefit notch. Journal of
Health Economics, 30(4):719–729.

30



Gourinchas, P.-O. and Parker, J. A. (2002). Consumption over the life cycle. Economet-
rica, 70(1):47–89.

Groneck, M. and Wallenius, J. (2021). It sucks to be single! Marital status and redistri-
bution of social security. The Economic Journal, 131(633):327–371.

Hall, R. E. and Jones, C. I. (2007). The value of life and the rise in health spending*.
The Quarterly Journal of Economics, 122(1):39–72.

Heathcote, J., Violante, G., and Storesletten, K. (2020). Presidential address 2019: how
should tax progressivity respond to rising income inequality? 18(6):2715–2754.

Jones, J. B., De Nardi, M., French, E., McGee, R., and Kirschner, J. (2018). The lifetime
medical spending of retirees. NBER Working Papers no. 24599, National Bureau of
Economic Research.

Jones, J. B. and Li, Y. (2023). Social security reform with heterogeneous mortality.
Review of Economic Dynamics, 48:320–344.

Karahan, F. and Ozkan, S. (2013). On the persistence of income shocks over the life cycle:
evidence, theory, and implications. Review of Economic Dynamics, 16(3):452–476.

Knoef, M., Been, J., Alessie, R., Caminada, K., Goudswaard, K., and Kalwij, A. (2016).
Measuring retirement savings adequacy: developing a multi-pillar approach in the
Netherlands. Journal of Pension Economics & Finance, 15(1):55–89.

Knoef, M., Been, J., Rhuggenaath, J., Goudswaard, C., and Caminada, K. (2017). De
toereikendheid van pensioenopbouw na de crisis en pensioenhervormingen. Netspar
Design Paper no. 68, Netspar.

Ko, A. (2022). An equilibrium analysis of the long-term care insurance market. The
Review of Economic Studies, 89(4):1993–2025.

Kopecky, K. A. and Suen, R. M. H. (2010). Finite state markov-chain approximations to
highly persistent processes. Review of Economic Dynamics, 13(3):701–714.

Lockwood, L. M. (2018). Incidental bequests and the choice to self-insure late-life risks.
American Economic Review, 108(9):2513–2550.

McClellan, M. and Skinner, J. (2006). The incidence of Medicare. Journal of Public
Economics, 90(1):257–276.

Mincer, J. A. (1974). Schooling, experience, and earnings. Columbia University Press.

Nakajima, M. and Telyukova, I. (2023). Medical expenses and saving in retirement: the
case of U.S. and Sweden. American Economic Journal: Macroeconomics (conditionally
accepted).

OECD (2023). Health at a glance 2023: OECD indicators. OECD, Paris.

Paz-Pardo, G. and Galves, J. (2023). Richer earnings dynamics, consumption and port-
folio choice over the life-cycle. Working Paper.

31



Poterba, J. M. (2014). Retirement Security in an Aging Population. American Economic
Review, 104(5):1–30.

Powell, J. L. (1994). Estimation of semiparametric models. In Engle, R. F. and McFadden,
D. L., editors, Handbook of Econometrics, volume 4, pages 2443–2521. Elsevier.

Rodrigues, R., Ilinca, S., and Schmidt, A. E. (2018). Income-rich and wealth-poor?
The impact of measures of socio-economic status in the analysis of the distribution of
long-term care use among older people. Health Economics, 27(3):637–646.

Rouwenhorst, G. (1995). Asset pricing implications of equilibrium business cycle models.
In Cooley, T. F., editor, Frontiers of Business Cycle Research, pages 294–330. Princeton
University Press, New Jersey, Princeton.

Smith, J. (2007). The impact of socioeconomic status on health over the life-course.
Journal of Human Resources, 42(4).

St-Amour, P. (2022). Valuing life over the life cycle. Working paper.

Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Consumption and risk sharing over
the life cycle. Journal of Monetary Economics, 51(3):609–633.

Tenand, M., Bakx, P., and van Doorslaer, E. (2020a). Equal long-term care for equal needs
with universal and comprehensive coverage? An assessment using Dutch administrative
data. Health Economics, 29(4):435–451.

Tenand, M., Wouterse, B., Bakx, P., and Bom, J. (2020b). Do co-payments affect nursing
home entry? An assessment based on Dutch administrative data. Netspar Design Paper
no. 139.

van den Berg, G. (2001). Handbook of Econometrics. In Heckman, J. and Leamer, E.,
editors, Handbook of Econometrics, volume 5, pages 3381–3460.

van der Vaart, J., Alessie, R., Groneck, M., and van Ooijen, R. (2023). Combining
insurance against old-age risks to accommodate socioeconomic differences in long-term
care use and mortality. Working paper.

van der Vaart, J., Alessie, R., and van Ooijen, R. (2020). Economic consequences of
widowhood: evidence from a survivor’s benefits reform in the Netherlands. Netspar
Design Paper no. 160.

van Ooijen, R., Alessie, R., and Kalwij, A. (2015). Saving behavior and portfolio choice
after retirement. De Economist, 163(3):353–404.

Wouterse, B., Hussem, A., and Wong, A. (2021). The risk protection and redistribution
effects of long-term care co-payments. Journal of Risk and Insurance, 89(1):161–186.

32



Appendices

A Life-cycle Model

A.1 Government Budget Constraint

The government collects the taxes and co-payments to finance expenditures on the first

pillar pension and LTC provision. Yet, government revenues and spending are not guar-

anteed to be balanced in the model. To let the government break even, we assume

additional fixed transfers of TrSS and TrLTC(a tax or subsidy) in each age period. For a

household of a given age, the government expenditures on LTC are:

LTC(hm
t , h

f
t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ⋅ LTCcost if hm
t = 2 and hf

t = 2,

LTCcost if hm
t = 2 or hf

t = 2,

0 elsewhere,

where LTCcost = e58,500 is the cost of an individual stay in a public institution for a

year.

Similarly, the government pays first pillar pension:

SS(t, hm
t , h

f
t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ⋅ w if t ≥ 65, hm
t ≠ 3 and hf

t ≠ 3,

1.4 ⋅ w if t ≥ 65, hm
t = 3 or hf

t = 3,

0 elsewhere.

These are the expenditures per household and conditional upon age t and health statuses

hm
t and hf

t . Total, i.e., unconditional, government expenditures GELTC and GESS are

the expenditures per household weighted by the steady-state distribution on household

types f(ℵ), with ℵ = ℵW ∪ ℵR = (at, θ, ηt, εt,DBt, ft, hm
t , h

f
t , t)′. Then:

GESS = σ1 ⋅ ∫
ℵ

f(ℵ) ⋅ SS(ℵ)dℵ, and GELTC = σ2 ⋅ ∫
ℵ

f(ℵ) ⋅ LTC(ℵ)dℵ,
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where σ1 and σ2 reflect the share of government expenditures financed through dedicated

taxes and co-payments. The rest is financed with general taxes and not of interest when

balancing the government budget.13

To finance these benefits, the government obtains revenue from taxes and co-payments:

τSS(⋅), τL(⋅), and m(⋅). Also, there is an additional balancing transfer Trx with x ∈
(SS,L). The transfer is defined as follows:

Trx(f) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 ⋅ Trx if f = couple

Trx if f = single woman or single man,

and is thus twice as large for couples than for singles.

Government revenues, GRx, are given by:

GRSS(TrSS) = ∫
ℵ

f(ℵ) ⋅ (τSS(ℵ) + TrSS(ℵ))dℵ and

GRLTC(TrLTC) = ∫
ℵ

f(ℵ) ⋅ (τL(ℵ) + m(ℵ) + TrLTC(ℵ))dℵ,

which consist of the sum of taxes, co-payments for LTC, and the additional tax (subsidy)

that balances the government budget constraint.

The government sets the transfer levels Trx according to:

GEx = GRx(Trx),

which can be tax or subsidy, depending on whether there is a deficit or a surplus. Ap-

pendix A.4 explains how we compute these transfers numerically.

13We take the values from 2010: σ1 = 0.664 and σ2 = 0.640, which we com-
puted using aggregate expenditures and revenues reported on: https://www.cbs.nl/nl-
nl/nieuws/2019/37/inkomsten-uit-sociale-premies-6-1-miljard-hoger-in-2018, [August 7, 2023] and
https:/opendata.cbs.nl/statline/CBS/nl/dataset/84121NED/table?ts=1564565763409, [August 7,
2023].
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A.2 Closed-form Solution for Policy Function Iteration

We elaborate here on how the households determine their consumption policy functions.

We use the Bellmann maximization principle, which recursively solves the household

optimization problem from the last to the first life-cycle period. The objective function

is the value function in this case. A general form of the value function in any state

ℵ = ℵW ∪ ℵR is given by:

V(ℵ; hm
t = i, hf

t = j) =max
ct,at+1

uf (ct) + β ⋅ ((1 − πi,j
3,3(t, I)) ⋅ E[V(ℵ+)∣ℵ] + πi,j

3,3(t, I) ⋅ B(at+1))
s.t. at+1 = R ⋅ at + yt − τSS − τL − τG − mt + TrSS(⋅) + TrLTC(⋅) − ct

at+1 ≥ 0, (3)

where (i, j) ∈ {1,2,3}. The Lagrangian corresponding to (3) reads as:

max
ct,at+1,λ

L(⋅) = uf (ct) + β ⋅ ((1 − πi,j
3,3(t, I)) ⋅ E[V(ℵ+)∣ℵ] + πi,j

3,3(t, I) ⋅ B(at+1))
+ λ ⋅ {R ⋅ at + yt − τSS − τL − τG − mt + TrSS(⋅) + TrLTC(⋅) − ct − at+1} , (4)

which has the following first-order constraints:

∂L(⋅)
∂ct

∶= uf
ct

− λ = 0 (5)

∂L(⋅)
∂at+1

∶= β ⋅ ((1 − πi,j
3,3(t, I) ⋅ E[Vat+1(ℵ+)∣ℵ] + πi,j

3,3(t, I) ⋅ Bat+1(at+1)) − λ = 0 (6)

∂L(⋅)
∂λ

∶= R ⋅ at + yt − τSS − τL − τG − mt + TrSS(⋅) + TrLTC(⋅) − ct − at+1 = 0. (7)

Note that V(ℵ) in (3) is an optimum, and so is the Lagrangian in (4) when analyzed in

ct(ℵ), at+1(ℵ), and λ(ℵ). As a consequence, we can apply the envelope theorem:

Vat(ℵ) = ∂V(ℵ)
∂at

= ∂L(⋅)
∂at

∣
ct(ℵ),at+1(ℵ),λ(ℵ)

= λ(ℵ) ⋅ R,
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which has to hold in the next period as well:

Vat+1(ℵ+) = ∂V(ℵ+)
∂at+1

= ∂L(⋅)
∂at+1

∣
ct+1(ℵ+),at+2(ℵ+),λ(ℵ+)

= λ(ℵ+) ⋅ R, (8)

where ℵ+ is the state vector in the next period. Furthermore, (5) holds optimally in the

future:

uf+

ct+1 (ct+1(ℵ+)) = λ(ℵ+). (9)

Combining (8) and (9) yields:

Vat+1(ℵ+) = uf+

ct+1 (ct+1(ℵ+)) ⋅ R (10)

Using (10), we build the Euler equation that describes the evolution of consumption and

assets over time. We combine (10) with (5) and (6), while (7) simultaneously holds (to-

gether with the non-negativity constraint of assets). The Euler equation on consumption

and bequests (assets) is:

uf
ct (ct(ℵ)) = β ⋅ ( (1 − πi,j

3,3(t, I)) ⋅ R ⋅ E[uf+

ct+1 (ct+1(ℵ+)) ∣ℵ]
+ πi,j

3,3(t, I) ⋅ Bat+1(at+1(ℵ))) (11)

with: at+1(ℵ) = R ⋅ at + yt − τSS − τL − τG − mt + TrSS(⋅) + TrLTC(⋅) − ct(ℵ) ≥ 0

This system can be recursively solved if we know the solution for the last period.

A.3 Terminal Period Solution

We now solve the dynamic program problem for the terminal (last) period t = T . Note

that the household will not be around in the next period (πi,j
3,3(T, I) = 1) but can bequeath,

where (i, j) ∈ {1,2,3}. The terminal period solution of (11) in state ℵ reduces to:

uf
cT

(cT (ℵ)) = β ⋅ BaT+1(aT+1(ℵ))
aT+1(ℵ) = R ⋅ aT + yT − τSS − τL − τG − mT + TrSS(⋅) + TrLTC(⋅) − ct(ℵ)

= μ − cT (ℵ) ≥ 0 (12)
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where μ is the total wealth holding at age T that is split over consumption and a bequest.

To solve the system, we have to consider three cases: φ = 0 (no bequest), φ ∈ (0,1)
(some wealth above threshold ca is bequeathed), and φ = 1 (all wealth above threshold ca

is bequeathed). The marginal utility of leaving a bequest is:

BaT+1(aT+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if φ = 0

φ
1−φ

σ ⋅ ( φ
1−φ ⋅ ca + aT+1)−σ if φ ∈ (0,1)

c−σa if φ = 1.

Also, marginal utility from consumption depends on family structure:

ucT (cT ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c−σT if fT = single man or woman

2 ⋅ ( 1
η)1−σ ⋅ c−σT if fT = couple.

If φ = 0, the Euler equation in (12) becomes:

uf
cT

(cT (ℵ)) = β ⋅ BaJ+1(aJ+1(ℵ)) →
uf
cT

(cT (ℵ)) > β ⋅ 0 →
cT (ℵ, μ) = μ, (13)

where the latter equality stems from the budget constraint in (12).

If φ = 1, the Euler equation in (12) becomes:

β ⋅ BaJ+1(aJ+1(ℵ)) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c−σT if fT = single man or woman

2 ⋅ ( 1
η)1−σ ⋅ c−σT if fT = couple.

Solving for cT gives:

cT (ℵ, μ) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min (β− 1
σ ⋅ ca, μ) if fT = single man or woman

min(2 1
σ ⋅ ( 1

η) 1
σ
−1 ⋅ β− 1

σ ⋅ ca, μ) if fT = couple.
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Similarly, we solve the Euler equation for φ ∈ (0,1) and get:

cT (ℵ, μ) = min(( x1(fT )
x1(fT ) + x2

⋅ x−11 (fT ) ⋅ ca + x2

x1(fT ) + x2

⋅ μ) , μ) (14)

with:

x−11 (fT ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β− 1
σ if fT = single man or woman

2
1
σ ⋅ ( 1

η) 1
σ
−1 ⋅ β− 1

σ if fT = couple,

and x2 = ( φ
1−φ)−1.

Note that the bequest size is aT+1(ℵ, μ) = max (μ − cT (ℵ, μ) , 0) in all cases.

A.4 Numerically Solving the Model

We first discretize the state space and then solve the model along the discrete space.

Discretizing the state space Consider the vector with state variables ℵ = ℵW ∪ℵR =
(at, θ, ηt, εt,DBt, ft, hm

t , h
f
t , t)′. This vector contains continuous variables at, θ, ηt, DBt,

and εt. Solving the Euler equation for each value is computationally too demanding and

we, therefore, discretize these variables while maintaining the core properties of their

distribution.

We discretize labor productivity θ ∼ N (0, σ2
θ) and the transitory income shock

ε ∼ N (0, σ2
ε ) into a five- and three-dimensional grid using Gauss–Hermite quadrature.

We discretize the stochastic AR(1)-variable ηt into a time-independent three-state Markov

process. We use the decomposition method by Rouwenhorst (1995), which preserves the

unconditional mean, the unconditional variance, and the auto-correlation of the actual

process. Kopecky and Suen (2010) describes the algorithm in detail. We discretize the

second pillar pension benefit on a 12-dimensional exponential grid from 0 to 150,000

(growth rate = 0.52).

Lastly, we discretize assets (at) over a grid Â from e0 to e1,000,000. The asset grid

contains 100 values. To prevent oscillation of the model for asset levels near zero, we take

an exponential grid, i.e., we take relatively more low than high values for assets at on the
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grid (growth rate = 0.05).

Solving the model We require the probability distribution of assets at+1(ℵ) and con-

sumption ct(ℵ) at any age t. Suppose all parameter values are known in the model.

We apply policy function iteration to solve the model and then compute the probability

distribution.

We start with the closed-form solution of the terminal period T provided in Appendix

A.3. We hereafter numerically solve the Euler equation system (11) from period T − 1

back to period 1 and calculate the resulting policy functions ct(ℵ) and at+1(ℵ).
Next, we compute the distribution of households over the state space ℵ. To increase

computational speed, we analytically compute the distribution rather than infer this from

a simulation (see, e.g., Cagetti, 2003). Furthermore, directly computing the distribution

prevents that in an agent-based simulation, it remains unknown for what number of

households the model statistics converge.

We compute the state distribution at age t by updating the state distribution at

time t − 1. For this, we assume an initial state distribution at age t = 25. The initial

household consists of a couple without using LTC. They draw labor productivity level θ

from the discrete distribution. We take a0 = 0, DB25 = 0, and η24 = 0, so the household

initially has no assets, pension accruals, and income shock. This distribution is modified

to create a distribution over the state space for age 26. Given the current state ℵ at

age 25, we know how many assets any household chooses to possess at age 26 and the

conditional probability of ending up in a particular health and income state at age 26.

This information (transition matrix) suffices to update the state distribution of ℵ from

age 25 to the distribution at age 26. We repeat this procedure until age t = T = 100.

These state distributions are also essential to compute the transfer Trx that would

balance the government budget (see Appendix A.1), x ∈ (SS,LTC). For each state, we

know the cost of providing LTC and pension, the paid taxes, and co-payments. We can

subsequently compute the expected government revenues and costs. We apply a bisection

search to find the level Trx that exactly balances the revenues and cost.
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B First-stage Estimates

B.1 Data and Estimation of the Health Processes

Socioeconomic differences in LTC use and mortality are the primary input in our analysis.

To quantify them, we use longitudinal data on LTC use and mortality, a simulation model

to compute complete life histories on LTC use and death, and a socioeconomic status

measure to stratify the life histories. The data and estimation procedure of the health

process closely follows van der Vaart et al. (2023), which we will summarize here.

We use unique registry data from Statistics Netherlands reporting an individual and

household key, institutional care use, death, marital status, birth date, and gender for

the Dutch population between 2006 and 2014. The data are unique due to their high

frequency: the registers daily report whether an individual stays in an institution, i.e., a

residential or nursing home, died, and has a partner, i.e., is married, has a partnership

contract, or cohabits on a contractual basis. The high frequency of the data allows us

to precisely model many short institutional care spells that occur. Furthermore, it will

enable us to model the effect of marital status on LTC use and mortality precisely from

the moment of marital dissolution onward.

We restrict the estimation of the health process to households whose members are

both retired, i.e., aged 65 or older and have retirement income as their main income

source. The age restriction seems natural as only 1.0% of the 65-year-olds in our sample

uses institutional care. To save on the number of heterogeneous groups, and thus state

space of the life-cycle model, we further restrict to individuals who are or were married

at age 65. We observe 2,548,664 individuals and 1,487,109 households.

To construct a socioeconomic measure, we merge this data to household records on

income – the sum of couple members’ pre-tax income (incl. social transfers and pension

income) – and financial assets (savings, stocks, and bonds). The socioeconomic status

measure is the average sum of equivalized household income and annuitized financial

assets (savings, stocks, and bonds), reflecting lifetime income. This comprehensive mea-

sure has the advantage that it considers that after retirement, some households have little
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income but many assets, e.g., former entrepreneurs (Knoef et al., 2016). We compute

lifetime income quintiles I ∈ {1,2,3,4,5} depending on quintiles of its distribution.14

To compute complete life histories on LTC use and death, we use the competing risk

model from van der Vaart et al. (2023) that allows for socioeconomic dependencies in

risks and explicitly accounts for the spouse as a potential informal care provider. We dis-

tinguish three individual states: not using public institutional care (i = 1), using public

institutional care (i = 2), or death (i = 3). Home-based care use is not a separate state

because its co-payments and, thus, redistributive effects are very limited in the Nether-

lands (Tenand et al., 2020b). For parsimony, marital status is modeled as a covariate,

and not as a separate (sub-)state in the competing risk model. As a first step, we specify

and estimate a proportional hazard model for the transition rate λij of going from a given

state i to state j ≠ i at age t (van den Berg, 2001):

λij(t ∣ mar(t),G, I) = exp (γij(G, I) ⋅ t + cij(G, I) + βij(G, I) ⋅ mar(t)) (15)

where γij is the age effect, cij is the effect of being single, and cij + βij is the effect of

having a partner (mar(t) = 0: has no partner; mar(t) = 1 has no partner). All coefficients

are estimated conditional upon gender G and lifetime income quintile I.15 We estimate

the model following standard log-likelihood inference for duration models (van der Vaart

et al., 2023)

Because we observe the relevant outcomes only between 2006 and 2014, we use the

estimates of (15) to simulate complete life histories on LTC use, marital status, and

mortality. We generate a survival probability and thus a random timing of the transition

from i to j:

Sij(t ∣mar(t),G, I) = P(T ≥ t, j∣mar(t),G, I, i) = exp(−∫
t

0
λij(τ ∣mar(τ),G, I)dτ) (16)

The simulation starts at age 65 with 100,000 households, when both couple members are

alive. Each individual can move to two possible destination states. Using (16), we draw

14An alternative would be to take the level of education, but the register on education is incomplete
for older cohorts, implying we have to stick to the current data.

15See Appendix B.2 for the fit on LTC use and mortality. We also estimated a model including frailty,
but this specification gave a worse fit on LTC use and mortality.
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a transition time for each state. The minimum of the two transition times determines

which actual transition occurs. We repeat this procedure for the successive states until

both members died. While the simulation is finished for the couple member who dies

first, we still have to simulate the life history of LTC use for the surviving partner after

widowhood. We use (16) but take the dummy value mar(t) = 0 instead of mar(t) = 1.

After this last spouse dies, we stop the simulation and have the complete –and dependent–

life histories on LTC use and mortality for the two partners.
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B.2 Goodness of Fit of Health Processes
Figure 2: Goodness of Fit of Survival Curves by Age
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Notes: The figure compares the empirical survival curves with their simulated counterpart. The
simulated curves are population-averaged measures of a life cycle simulation of 100,000 households
with 1,000 bootstrapped samples.
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Figure 3: Goodness of Fit of Long-term Care Use by Age
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Notes: The figure compares the empirical long-term care curves with their simulated counterpart. The
simulated curves are population-averaged measures of a life cycle simulation of 100,000 households
with 1,000 bootstrapped samples.
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B.3 Age Profile on Income

Figure 4 presents the model estimates for the age profile {c + log(αt)}64
t=25. c is the fixed

effect for the 1950 cohort, which we add because we want to tailor the income profile

to the 1950 cohort. Figure 4 displays a familiar hump-shape (cf. Mincer, 1974): income

peaks at age 55 and decreases after that. This pattern arises due to the accumulation and

decumulation of human capital –working experience– over the life cycle, and households

start to work less when retirement nears.

Figure 4: Estimated Age Profile on Income
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Notes: Income is measured in 0000s euros. Parameters are estimated for married households whose
oldest member is younger than 65 and born after 1949. Adding c implies normalized estimates that
refer to the age effect for those born in 1950. Data from the IPO 2001-2014: 77,118 households and
534,006 panel-year observations.

B.4 Income Uncertainty

We model household income dynamics as an AR(1) (canonical) process:

log(yt) = log(αt) + θ + ηt + εt

ηt = ρ ⋅ ηt−1 + ut

θ ∼ N (0, σ2
θ); εt ∼ N (0, σ2

ε ); ut ∼ N (0, σ2
u); η24 = 0
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First, we estimate the age effects log(αt) by running a fixed effects regression of log

household income on age dummies, where each dummy represents a distinct effect log(αt).
Next, to wash out birth cohort effects, we regress the estimate θ̂i on birth year dummies

and impute the household’s θ̂i to the value it would have if born in 1950. We then estimate

the uncertain income component θ + ηt + εt by minimum distance estimation, minimizing

the squared difference between theoretical and empirical moments (cf. Storesletten et al.,

2004). Because we have an auto-regressive process with a lag of one year, we match the

variance and first-order auto-correlation of the income component.

The assumptions on the persistent income component imply the following process in

terms of the past and current shocks:

ηt = ρt−24 ⋅ η24 + t∑
j=25

ρt−j ⋅ uj + εt, t = 25, .,64

from which the moments

var(θ + ηt + εt) = σ2
θ + ρ2(t−24) ⋅ σ2

z + t∑
j=25

ρ2(t−j) ⋅ σ2
u + σ2

ε

cov(θ + ηt + εt, θ + ηt−1 + εt−1) = σ2
θ + ρ2(t−24)−1 ⋅ σ2

z + t∑
j=25

ρ1+2(t−j) ⋅ σ2
u

follow, allowing us to identify the moments. Identification follows standard covariance

arguments. For further details on identification, we refer to Arellano (2003).

We employ a weighted minimum distance estimator to fit these 79 moments (40 for

the variances 39 for the covariances). The objective function is the sum of squared

differences between the theoretical and empirical variances and co-variances. Due to the

small sample considerations explained in Altonji and Segal (1996), our estimator employs

the identity matrix as the weighting matrix. Hence, each moment receives the same weight

in the objective function. The estimator, which minimizes the objective function, yields

consistent but possibly inefficient estimates. Figure 4 and Table 2 in Section 4.1 present

the estimates for the structural parameters.

Figure 5 shows the goodness-of-fit of the model estimates for the targeted moments.
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Figure 5: Fit of the Income Process Before Age 65
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(b) Auto-correlation of residual income
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Notes: Income measured in 0000s euros. We report the parameters for married households whose
oldest member is younger than age 65 and born after 1949. Data from the IPO 2001-2014: 77,118
households and 534,006 panel-year observations.

Our model matches the variance and first-order auto-correlation (closely related to first-

order autocovariance) of the income shock process well. Notably, the variance of the

income shock increases over time, implying more heterogeneity in income when age in-

creases. This is important when constructing heterogeneity in asset profiles with our

life-cycle model.

B.5 Replacement rates

We compute the replacement rates of survivor pensions using the IPO data restricted

to households whose members are all aged 65 and over. Both members must have re-

tirement income as their primary income source. The IPO does not distinguish between

occupational pension benefits and income from privately purchased annuities (third pil-

lar), so the replacement rate reflects both occupational and privately-arranged pension

benefits. We run a fixed effects regression of log private pension income on year dummies

and the family structure: being a couple, a single man, or a single woman. The expo-

nentiated coefficient for singles gives their replacement rate. The estimates for a single
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man or woman are rrm = 0.93 (SE: 0.001) and rrf = 0.55 (SE: 0.005), respectively. The

widow’s replacement rate means that each euro of a defined pension benefit drops to 55

cents when the female spouse survives. In line with our earlier work van der Vaart et al.

(2020), we report rrm > rrf implied by that men were the prime earner in the households

and pension benefits mostly accrued to them.

B.6 Tax Function Estimates

For general taxes, we estimate the following specification (cf. Heathcote et al., 2020):

τG(y, ⋅) = y − λ ⋅ y1−τ ,

which we estimate conditional upon age group (below vs. above age 65) and family

structure (married vs. single).

Table 6 shows the estimates. Our estimates are in the ballpark of Heathcote et al.

(2020). Using data from the Congressional Budget Office, they report τ ∈ (0.089,0.236)
for the U.S. between 2012-2016. λ is merely a level effect and thus does not have appro-

priate benchmark values.

Table 6: Parameters of the General Income Tax Function τG

Couples Singles
Below age 65 Above age 65 Above age 65

λ 1.241 1.157 1.073
(0.005) (0.008) (0.012)

τ 0.185 0.162 0.148
(0.002) (0.005) (0.010)

No. households: 77,118 18,325 14,176
Panel-year observations: 534,006 101,067 64,571

Income measured in 0000s euros. Estimates for the group younger than 65 restricts to
households whose oldest member is younger than 65 and born after 1949. Estimates
for the group older than age 65 restricts to households whose youngest member is older
than 65 and born before 1950. Standard errors (in parentheses) are clustered at the
household level.

For dedicated taxes for first pillar pension (τSS) and LTC provision (τL), we estimate
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the following specification:

τx(y, ⋅) = α0,x + α1,x − α0,x

1 + e
−( y−α2,x

α3,x
)
, x ∈ {LTC, SS}, (17)

which we estimate conditional upon age group (below vs. above age 65) and family

structure (married vs. single). α1,x represents the maximum tax amount, which is present

in the Dutch system. Table 7 shows the estimation results.

Table 7: Parameters of the Dedicated Tax Functions τL and τSS

Couples Singles
Below age 65 Above age 65 Above age 65

Pension income (x = SS)

α0 -0.255
(0.013)

α1 0.697
(0.002)

α2 3.259
(0.041)

α3 1.566
(0.022)

LTC provision (x = LTC)

α0 -0.166 -0.060 -0.026
(0.008) (0.004) (0.005)

α1 0.447 0.378 0.303
(0.001) (0.003) (0.003)

α2 3.268 3.510 2.578
(0.004) (0.001) (0.002)

α3 1.599 0.872 0.618
(0.230) (0.021) (0.021)

No. households: 77,118 18,325 14,176
Panel-year observations: 534,006 101,067 64,571

Income measured in 0000s euros. Estimates for the group younger than 65 are re-
stricted to households whose oldest member is younger than 65 and born after 1949.
Estimates for the group older than 65 are restricted to households whose youngest
member is older than 65 and born before 1950. Standard errors are clustered at the
household level (in parentheses).
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B.7 Cohort Effects to the Asset Profiles

Akin to estimating the income processes before age 65, we have to deal with cohort effects

to observed asset profiles. In the cross-section (a given year), older households are born in

an earlier year than younger households and, due to secular income growth, have a lower

labor productivity level and pension income. Because of this, asset levels of older cohorts

will likely be lower. At the same time, assets of older cohorts may be higher because they

include more former entrepreneurs, such as farmers. Computing age profiles of assets

unconditionally upon birth cohort would consist of these undesired cohort effects.

To obtain asset profiles without cohort effects, we follow French (2005) and run spec-

ifications (2a) and (2b) with the logarithm of assets ait as outcome:

log(ait) = log(αt,w) + θi,w + εit,w, (18a)

where i indexes a household and t is the age of the household, i.e., the age of the oldest

household member. This age ranges from 65 to 100. w is a subscript to distinguish these

parameters involving assets from those involving income in specifications (2a) and (2b).

To wash out cohort effects, we run the following OLS regression of the predicted fixed

effects on birth cohort dummies (cf. French, 2005; De Nardi et al., 2023):

θ̂i,w = θw + θc,w + θ̃i,w, c ∈ {1905,1906, ...,1944,1945 − 1949}, (18b)

where θw is the cohort effect of birth years 1945-1949, cw + θc,w is the fixed effect for the

other cohorts, and residual θ̃i is the household-specific effect excluding a cohort effect. To

align with the income process before age 65 being tailored to households born in 1950,

we take the cohort born between 1945 and 1949, as the reference group. In the ideal

econometric scenario, we have θc,w = 0 so no cohort effects. To mimic this, we subtract

the estimated cohort effect θ̂c,w from the right-hand side of (18a):

log(âit) = log(α̂t,w) + θ̂i,w + ε̂it,w − θ̂c,w. (18c)

log(âit) is the predicted asset level for the household when they would be born between
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1945 and 1949. To allow for distinct age patterns by marital status and lifetime income,

we run the regressions for these groups separately.

We exponentiate the assets to get the asset level that is cleaned from cohort effects.

While the regression omits zero assets, we re-include them in the ‘cleaned’ profiles; neg-

ative assets and assets above e2,500,000 are dropped.1617

Figure 6 shows median asset profiles before and after we control for birth cohort

effects. Each separate line represents a different birth cohort, depending on the age in

2006. The left panels a. and c., i.e., the raw data, reveal that birth cohort effects are

strong, particularly for married households with high lifetime income. Those households

have more assets if they are born earlier. Furthermore, within birth cohorts, there seems

to be a strong time trend, induced by the period of financial crisis that is part of our

observational window.

Using (18c), a birth cohort effect is controlled for in panels b. and d.. This reverses the

differences between cohorts: the youngest cohorts hold most assets and asset profiles of

different cohorts nicely overlap. Also, year trends are less pronounced. As a consequence,

we observe households decumulating asset holdings over time. The asset profiles in Figure

1 in Section 5, which we target, are the data from panels b. and d. unconditional upon

birth cohort.

C Second-stage Estimates

C.1 Standard Errors of Estimated Preference Parameters

We compute standard errors of δ̂ by using a matrix D that measures the responsiveness

of each moment condition to slightly changing the parameter estimate. Specifically, D

is a k × 3 dimensional matrix where the k-th row contains the derivative of the k-th mo-

ment condition:
∂ (Md

k−Ms
k(χ̂,δ))

∂δ . The variance-covariance V of estimator δ̂ is documented

in De Nardi et al. (2010): V = (D′D)−1 (D′SD) (D′D)−1, where S is the empirical

16We drop 0.9% of the households and 2.6% of the panel-year observations because of these restrictions.
17We also tried Deaton-Paxson dummies, but identifying the effects suffers heavily from multi-

collinearity. Also, taking levels as outcome could not properly control for many zero assets in the
data.
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Figure 6: Asset Profiles Before and After Controlling for Birth Cohort Fixed Effects

(a) Married: before controlling
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(b) Married: after controlling
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(c) Single: before controlling
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(d) Single: after controlling
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Notes: Each line represents the asset profile conditional upon birth cohort and income quintile. We
distinguish seven birth cohorts based on the age of the household in 2006: younger than 65; aged 65-69;
aged 70-74; aged 75-79; aged 80-84; aged 85-89; and aged 90 and over.

variance-covariance matrix regarding the data moments. We compute D numerically.
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