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Abstract
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consistent estimates of heterogeneous treatment effects under very general conditions. The
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other recently derived estimators.
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1 Introduction

The difference-in-differences (DID) study design is an important tool for causal inference

in economics. In recent years, there has been an extraordinary number of new theoreti-

cal papers on how to obtain DID estimates in regression-based implementations of these

study designs. In particular, the discovery that the two-way (cohort and time) fixed ef-

fects estimator of a model with a constant treatment effect can produce biased estimates

of treatment effects when there is staggered treatment timing and heterogeneous treatment

effects (e.g., de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021), has led to

new approaches for dealing with both staggered timing and heterogeneous treatment effects

(e.g., Callaway and Sant’Anna, 2021; Sun and Abraham, 2021).

What remains unknown is how the recent proposed methods to address heterogeneous

treatment effects and staggered treatment timing work with repeated cross-sectional data

that are common in applied research, as opposed to balanced panel data. The theoretical

results showing consistent estimates of heterogeneous treatment effects with staggered treat-

ment timing have been proven with panel data (Wooldridge, 2021; Borusyak et al., 2024),

but not yet with repeated cross-sections. Proofs with repeated cross-sections are more com-

plicated because covariates that are inherently time invariant are instead time varying when

averaged at the group level (also true at the individual level) because of the changing compo-

sition of individuals over time. Furthermore, it is not possible to include only pre-treatment

values of potentially endogenous time-varying variables, because these data are not observed

for individuals who only appear once in the cross-sectional sample.

This paper addresses theoretical and empirical issues with repeated cross-sections with

heterogeneous treatment effects and staggered treatment timing. We extend the methods

proposed in Wooldridge (2021) to derive an estimator for repeated cross-sections under

clearly stated assumptions that allow control variables to appear in a flexible way. To be

precise, we propose an estimator that uses a linear-in-parameters specification with sufficient

generality to be valid under general circumstances. This specification can be estimated using

a single ordinary least squares (OLS) regression on the sample of repeated cross-sections. It

delivers consistent and efficient estimates. We show that this approach is closely related to
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the imputation method in Borusyak et al. (2024).

Our proposed DID method estimates an OLS regression with heterogeneous treatment

effects. It is simple and transparent. It is easy to know how identification is achieved,

which treatment observations are compared to which control observations, and how many

parameters are estimated. Because our method uses OLS regression, it is efficient in the class

of linear estimators. Our method is flexible in how to incorporate covariates, which can be

included additively or in a way that allows the treatment effects to vary with covariates. Our

method has precise estimates, even in flexible model specifications with numerous treatment

parameters. In fact, the standard errors in our applications are smaller than those found

using Callaway and Sant’Anna or stacked regressions (Callaway and Sant’Anna, 2021; Cengiz

et al., 2019). We call it FLEX, because it is a flexible linear estimator with covariates (X).

In addition to the theoretical results, we demonstrate the use of FLEX with two empirical

examples. Both of these policy-relevant examples use individual-level data from repeated

cross-sections, have policies that were implemented by cohorts of states staggered over a

number of years, and are unlikely to have constant treatment effects at the group-time (state-

time) level. We compare the estimated average treatment effects on the treated (ATET) and

their standard errors with those obtained using other popular methods (Cengiz et al., 2019;

Callaway and Sant’Anna, 2021). The examples demonstrate the features of our proposed

FLEX estimator for repeated cross-sections with heterogeneous treatment effects, including

being easy to estimate, transparent about the number of parameters estimated, allowing

flexible controls for individual-level covariates, and having efficient standard errors. We also

show how the results from our regressions can be displayed in a variety of commonly used

graphical forms. The Stata code is available upon request.

2 Literature Review

2.1 Theoretical literature

Our paper is related to the extensive recent developments in econometrics about the es-

timation of treatment effects in difference-in-differences designs. De Chaisemartin and

D’Haultfœuille (2020) and Goodman-Bacon (2021) showed that difference-in-differences re-
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gressions that control for cohort and year fixed effects can identify treatment effects only

when the treatment effect is constant over time. This common method, often called two-way

fixed effects, uses observations in already treated groups as controls for other observations

that start treatment later, in addition to using never-treated observations as controls. The

overall average treatment effect is then a weighted average of comparisons that include ear-

lier treated units to later treated units, instead of only treated to never-treated units plus

not yet treated units.

Several other authors have proposed methods to avoid such unwanted comparisons. Call-

away and Sant’Anna (2021) compare treated units in pre- and post-treatment periods to the

period just prior to treatment to the same comparison for controls that can include the

never- and not-yet treated units. Sun and Abraham (2021) use an event-study approach

by exploiting both leads and lags. Borusyak et al. (2024) take a different approach and use

what they call imputation to sweep out the effects of covariates and then use the residuals

to estimate the treatment effects. Cengiz et al. (2019) propose a procedure that creates

samples (stacks) of treated cohort observations pooled with never-treated observations, then

combines those samples, which resolves the issue of unwanted comparisons. Cohort-level

treatment effects are then estimated using a linear regression commonly referred to as a

stacked regression. Wooldridge (2021) proposes an extended two-way fixed effects regres-

sion approach that includes interactions between treated cohorts and time and covariates,

allowing for estimation of heterogeneous treatment effects by cohort, time and covariates.

All these methods compare treated observations to not-yet-treated and never-treated ob-

servations, but never compare them to previously treated observations. There are recent

summary papers by de Chaisemartin and D’Haultfœuille (2023), Roth et al. (2023), and

Freedman et al. (2023).

2.2 Contribution

Our paper has several theoretical contributions. We propose FLEX—flexible linear esti-

mator with covariates (X)—for heterogeneous treatment effects in a difference-in-differences

study design with repeated cross-sectional data and staggered treatment starting times. The

linear-in-parameters specification can be estimated in a single linear regression. FLEX de-
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livers consistent parameter estimates, allows for a flexible functional form with respect to

covariates, and provides access to the OLS toolbox for inference and specification testing.

We prove that the FLEX treatment effect parameter estimates are asymptotically unbi-

ased estimates of the group-time heterogeneous treatment effects that can be obtained in the

repeated cross-section setting by an imputation method. The FLEX estimates are identical

to those from the Borusyak et al. (2024) imputation estimator. Therefore, this imputation

estimator extends both Borusyak et al. (2024) and Wooldridge (2021) to the group-time

(instead of cohort-time) level for cross-sectional data.

Aggregated treatment effects, such as the average treatment effect on the treated (ATET),

can be derived easily from the estimated heterogeneous treatment effects.

3 Theory

3.1 The Population Setting, Definitions, and Assumptions

Our goal is to set out a framework that focuses on analysis of repeated cross sections where

new units, i, belonging to groups g = 1, 2, ..., G are (randomly) sampled from the population

in every time period t = 1, 2, ..., T . Our framework also applies to panel data settings, most

transparently when units i in groups g are followed over time t. In that case we are studying

a stable population. When the data available are repeated cross sections, we assume the

existence of a stable population from which units are randomly sampled in each time period.

In defining parameters and stating assumptions, we assume that the populations are the

same across t. But, in practice, there may be changes in the population across t, a problem

that can, at least partly, be overcome by controlling for observable characteristics.

We now turn to the policy setting. We assume that the intervention occur at the group

level indexed by g = 1, 2, ..., G. Let the first time period in which the intervention occurs

be denoted by c with 1 < c ≤ T . Define a cohort as the subset of groups that receive the

intervention for the first time in period c. In what follows, we use c to indicate cohorts as well

as the time periods at which the subset of groups first received the intervention. Without

loss of generality, let g = 1, 2, ..., gc (gc < G) belong to cohort c. New cohorts enter in periods

after c, each of which is a subset of untreated groups in that period, until period C (C ≤ T ).
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Let each cohort consist of one or more sequentially numbered group with ḡ denoting the

largest value of g among the treated groups. Note that new entrant cohorts are not needed

for each and every period following c. Finally, let c = ∞ denote the never treated cohort,

corresponding to groups g = (ḡ + 1), ..., G. Note that C ≤ G; often C � G, where C is the

number of cohorts. Also, note that groups, g, must map one-to-one to cohorts, c so that if

g is known, c is known.

Define potential outcomes by treatment group,

Yt (g) , g ∈ {1, ..., G, } , t ∈ {1, 2, ..., T} .

The assumption of a stable population implies that each unit in the population has the full

set of potential outcomes in each time period t. For now, treatment assignment is absorbing,

i.e., it is not reversible.

The ATETs commonly of interest in staggered DiD settings are the mean differences in

the potential outcomes using Yit (ḡ + 1), ..., G) as the reference outcome in a treated period

t, i.e., the outcomes in the groups associated with the never treated cohort, c = ∞:

τgt = E [Yt(g)− Yt (∞) |Rg] , t = c, ..., T ; g = 1, ..., ḡ, (3.1)

where the R1, ..., Rḡ, ..., RG are binary indicators for each group with subscripts denoting

group and superscripts denoting the cohort to which the group belongs. For each (eventually)

treated group g, τgt, t = q, ..., T are the ATETs in all subsequent time periods.

For the general treatment, we allow a set of observed covariates that can be indexed by

time: {Xit = 1, ..., T}, where Xit is a 1 × K vector. Much of the literature assumes the

controls are dated prior to the first intervention date and do not change over time. This

restriction helps ensure that one is not including ‘bad controls’ in the analysis – that is,

elements in Xit that might be affected in the current or future periods by the intervention.

We do not index the Xit using potential outcomes notation [such as Xit (c)], and so we

are maintaining that the covariates do not change with the treatment assignment. (This is

different from saying that the treatment assignment cannot depend onXit – which, of course,

we allow.) Allowing Xit to have time variation means that we can include predictors of the

outcome whose paths are not influenced by treatment. In addition, when we have access
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only to repeated cross sections, the controls may necessarily be time varying – depending on

how information is collected during the repeated surveys. For example, a survey may ask

individuals about their highest grade completed, and this can change for some individuals

over time.

We present the assumptions conditional on covariates, with a special case being when

Xit is null. The first assumption rules out anticipatory changes in the potential outcomes

prior to the intervention occuring for each cohort. We adapt an assumption from Wooldridge

(2021, 2023) from the panel data case.

Assumption 3.1 (Conditional No Anticipation, CNA). For groups g ∈ 1, 2, ..., ḡ and t ∈
{1, ..., c− 1},

E [Yt(g)|Rg,Xit] = E [Yt (∞) |Rg,Xit] .

This simply means that, in any time period before the intervention occurs for groups in

cohort c, the potential outcomes are the same as the potential outcomes in the never treated

state. This assumption can be violated if units within groups that are eventually part of

cohort c anticipate the intervention and change their behavior. Because identification of the

ATETs uses the weaker assumption 3.1 weaker than what?, we adopt it in what follows.

Let Pt ∈ P1, P2, ..., PT denote binary indicators for observations in time periods t =

1, 2, ..., T respectively and Qc, Qc+1, ..., QC denote treated cohort indicators. Then, in the

staggered intervention case without exit, the time-varying treatment indicator is

Wt = Qc ·R1 · Pt +Qc ·R2 · Pt + ...+Qc+1 ·R2 · Pt + ...+QC ·Rḡ · Pt.

The observed outcome in every period is

Yt = QcYt (1) +QcYt (2) + ...QCYt (ḡ) +Q∞Yt (ḡ + 1) + ...Q∞Yt (G)

We state the parallel trends assumption conditional on covariates and assume linearity

of the conditional expectations:

Assumption 3.2 (Conditional Parallel Trends, CPT). For t = 1, 2, ..., T ,

E [Yt (∞) |R1, ..., RG,Xit] =
G∑

g=1

βgRg +
G∑

g=1

(Rg ·Xit) γj + ηt +Xitπt. (3.2)
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Note that assumption CPT is an extension of the analogous assumption in Wooldridge

(2021, 2023) where conditioning on cohort identity, c, is replaced by conditioning on group

identity, g. This extension is conceptually straightforward but can provide substantial addi-

tional flexibility in empirical applications.

Technically, we need not condition on the entire history of the covariates, {Xit = 1, ..., T}
in assumption 3.2, and so the covariates need not satisfy a strict exogeneity assumption (see

Wooldridge, 2010, Chapter 10). Nevertheless, if we think the treatment assignment influences

the covariates in the future, Assumption CPT would generally fail. For a recent discussion

of ‘bad controls’ in the DiD setting, see Wooldridge (2024). Also, we require a sufficient

number of observations per stratum in order to get precise estimates of the βj and ηj in

assumption 3.2.

Even if the covariates do not change over time, the terms Xitπt allow relaxation of

the usual parallel trends assumption. Their inclusion plays the same role as in Callaway

and Sant’Anna (2021), who apply standard treatment effects estimators when covariates

are available; see also Wooldridge (2021, 2023). The presence of (Rg ·Xit) γj allows for

substantial heterogeneity in how the average potential outcome changes with the groups

(and therefore with the treatment cohorts).

Similar toWooldridge (2023), under assumptions 3.1 and 3.2, the parameters in 3.2 are

identified using the untreated observations. In the subpopulation of untreated units at time

t, we can write

E (Yt|R1, ..., RG,Xit,Wt = 0) =
G∑

g=1

βgRg +
G∑

g=1

(Rg ·Xit) γj

+
T∑
t=2

ηtPt +
T∑
t=2

(Pt ·Xit) πt, (3.3)

where we use assumption 3.1 and the assumption that the cohort indicators (and therefore

Wt) are determined by the groups, g. Equation 3.3 shows that all of the parameters are

identified using the untreated observations, provided we have some units in every group.

The identification argument is easier to see in the simple T = 2 case where we also assume,

for simplicity, that there are only two groups and these are determined by the treatment
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indicator, W . Then, Assumption 3.2 can be written as

E [Y1 (∞) |W,X1] = α + βW +X1γ + (W ·X1) δ (3.4)

E [Y2 (∞) |W,X2] = α + βW +X2γ + (W ·X2) δ + η2 +X2π2 (3.5)

Under CNA, the expectation in equation 3.4 is the same when we replace Y1 (∞) with Y1 (2).

Because W = 0 implies Y1 = Y1 (∞) and W = 1 implies Y1 = Y1 (2), assumption 3.2 implies

E (Y1|W,X1) = α + βW +X1γ + (W ·X1) δ,

which shows that, provided there are some treated and control units, and X1 does not have

perfectly collinear elements, the parameters α, β, γ, and δ are identified using the control

and (eventually) treated units in t = 1. By equation 3.5,

E (Y2|W = 0,X2) = α +X2γ + η2 +X2π2 = (α + η2) +X2 (γ + π2)

Again, ruling out perfect collinearity inX2, (α + η2) and (γ + π2) are identified by the second

period control units. Because α and γ are identified, so are η2 and π2. Returning to equation

3.5, we have

E [Y2 (∞) |W = 1,X2] = (α + β + η2) +X2 (γ + δ + π2)

and so

E [Y2 (∞) |W = 1] = (α + β + η2) + E (X2|W = 1) (γ + δ + π2)

Identification of E (X2|W = 1) follows immediately because we observe the second-period

covariates for the all units, including the treated units. Because the other parameters are

identified by assumptions 3.1 and 3.2, E [Y2 (∞) |W = 1] is identified. Then

τ2 = E [Y2 (2)− Y2 (∞) |W = 1] = E (Y2|W = 1)− E [Y2 (∞) |W = 1]

is identified. The argument in the general staggered case is similar, with E [Yt (g) |Wg = 1] =

E (Yt|Wg = 1) always identified and E [Yt (∞) |Wg = 1] identified under assumptions 3.1 and

3.2.
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3.2 Estimation by Imputation and Ordinary Least Squares

The identification argument in subsection 3.1 immediately suggests an imputation approach

to estimation. We assume the availability of random samples from the population at each

time period t. The draws, indicated by i, are independent, but not generally identically

distributed because the population distribution of both the outcome and control variables

may change across t. (This same kind of heterogeneity is allowed in panel data settings.

Even if the population is stable across time, we allow for changing distributions across t.)

For unit i, t (i) represents the time period. The observed data for unit i is Yi,t(i), Xi(t), and

the group indicators, gi,t(i),j, j = 1, ..., J . As discussed earlier, the treatment assignment is

determined by the group. Typically, the group for a unit does not change over time – an

individual lives in the same state, say, over the time periods in question – but even if that is

true, the repeated cross sections setting means that the draws of group indicators over time

are from different samples of units.

Estimation of the parameters in equation 3.3 can proceed by running a OLS regression

on the untreated observations in the pooled cross-sections. Then, one mimics iterated ex-

pectations in the sample by using an out-of-sample prediction for Yt (∞) (for the treated

observations). Equivalently, the out-of-sample residuals are averaged over the appropriate

cohort-time period pair to produce cohort-time specific ATT estimates. The following proce-

dure extends Wooldridge (2021) to allow repeated cross sections and time-varying covariates.

It is also related to the imputation method in Borusyak et al. (2024), who mention applying

imputation in the repeated cross sections case. Here, we have derived an imputation estima-

tor for repeated cross sections under clearly stated assumptions that allow random control

variables that appear in a flexible way.

Procedure 3.1. [Imputation Estimation]

1. Use the control observations to estimate the parameters

(β1, ..., βG, η1, ..., ηG, γ2, ..., γT , π2, ..., πT ) (3.6)
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by OLS:

Yi,t(i) on Ri,t(i),1, ..., Ri,t(i),G, Ri,t(i),1 ·Xi,t(i), ..., Ri,t(i),G ·Xi,t(i),

P2,t(i), ..., PT,t(i), P2,t(i) ·Xi,t(i), ..., PT,t(i) ·Xi,t(i) (3.7)

2. For unit i, impute Yi,t(i) (∞) as

Ŷi,t(i) (∞) =
G∑

g=1

β̂gRi,t(i),g +
G∑

j=1

(
ci,t(i),g ·Xi,t(i)

)
η̂g

+
T∑
t=2

γ̂tPt(i) +
T∑
t=2

(
Pt(i) ·Xi,t(i)

)
π̂t (3.8)

3. For treatment group g, in period t, obtain

τ̂gt = N−1
gt

N∑
i=1

Qi,t(i),g · 1 [t (i) = t] ·
[
Yi,t(i) − Ŷi,t(i) (∞)

]

≡ N−1
gt

N∑
i=1

Qi,t(i),g · 1 [t (i) = t] · T̂Ei,t(i) = Ȳgt

−N−1
gt

N∑
i=1

Qi,t(i),c · 1 [t (i) = t] · Ŷi,t(i) (∞) (3.9)

where

N−1
gt =

N∑
i=1

Qi,t(i),c · 1 [t (i) = t]

is the number of units in treatment group g in time period t, T̂Ei,t(i) = Yi,t(i) − Ŷi,t(i) (∞) is

the unit-specific estimated treatment effect, and

Ȳgt = N−1
gt

N∑
i=1

Qi,t(i),g · 1 [t (i) = t] · Yi,t(i) (3.10)

is the average of the observed outcomes for units in treatment group g in period t. �

With a sufficient number of observations in each (g, t) cell, τ̂gt, will have good statistical

properties by the law of large numbers and central limit theorem. Nevertheless, the multi-

step nature of the estimation makes inference challenging. A similar issue arises in the panel

data setting in Borusyak et al. (2024), where unit-specific fixed effects are included in the

first imputation step. Fortunately, there is an algebraic equivalence between imputation and
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a longer regression that uses all of the data. To describe the longer regression, let X̄gt be

the average value of the covariates for treatment group g and time period t. Specifically, to

the list of regressors in equation 3.7 we add treatment indicators and treatment indicators

interacted with demeaned covariates:

Qi,t(i),g · Pt(i), Qi,t(i),g · Pt(i) ·
(
Xi,t(i) − X̄gt(i)

)
, t = c, ..., T ; g = 1, 2, ..., ḡ (3.11)

If Qi,t(i),c · Pt(i) = 1 then unit i is in treatment cohort c in time period t. The interactions

Qi,t(i),c · Pt(i) ·
(
Xi,t(i) − X̄gt(i)

)
allow for heterogeneity in the treatment effects as a function

of the observed covariates.

Proposition 3.1 (OLS). Using all of the data, consider the regression that includes all

regressors in equations 3.7 and 3.11:

Yi,t(i) on Ri,t(i),1, ..., Ri,t(i),G, Ri,t(i),1 ·Xi,t(i), ..., Ri,t(i),G ·Xi,t(i),

P2,t(i), ..., PT,t(i), P2,t(i) ·Xi,t(i), ..., PT,t(i) ·Xi,t(i)

Qi,t(i),c · Pq,t(i), ..., Qi,t(i),c · PC,t(i), ...,Qi,t(i),C · PC,t(i),

Qi,t(i),c · Pc,t(i) ·
(
Xi,t(i) − X̄gt(i)

)
, ...,

Qi,t(i),C · PC,t(i) ·
(
Xi,t(i) − X̄gt(i)

)
, ..., Qi,t(i),C · PC,t(i)

(
Xi,t(i) − X̄Ct(i)

)
(3.12)

Let the coefficients be
{
β̃g : j = 1, ..., G

}
, {η̃g : j = 1, ..., G}, {γ̃t : t = 2, ..., T}, {π̃r : t = 2, ..., T},

{τ̃gt : t = c, ..., T ; g = 1, ..., ḡ}, and
{
δ̃gt : t = c, ..., T ; g = 1, ..., ḡ

}
. Then

(i) For all g and t, β̃g = β̂g, η̃g = η̂g, γ̃t = γ̂t, and π̃t = π̂t.

(ii) For all g ∈ {1, 2, ..., ḡ} and t ∈ {c, ..., T},

τ̃gt = τ̂gt �

The equivalences in Proposition 3.1 are practically useful. Standard errors for the treat-

ment effects τ̃gt = τ̂gt from the regression in equation 3.12 are readily available, and issues

of clustering can be resolved in a standard pooled OLS setting. In addition to providing the

τ̂gt and their standard errors, the δ̃gt can be studied to determine if there are heterogeneous

treatment effects.
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As a special case of the regression in equation 3.12, one might have a single binary

indicator, Xit (probably not time-varying), separating units into one of two groups. The

scalar coefficients δ̃gt would be the difference-in-difference-in-differences (DiDiD) estimator

for the group represented by Xit = 1. Again, inference is straightforward.

3.2.1 Event-Study Regressions

It is straightforward to estimate event-study regressions (Roth, 2024) using extensions of

the regression in 3.1. This is easiest to see in the common timing case, where we simply

have a treatment dummy Wi,t(i). Procedure 3.1 produces estimates of the ATETs in each

treated period, effectively setting the ‘ pre-treatment’ effects to zero. Under the CNA and

CPT assumptions, this is best in terms of efficiency because it uses all pre-intervention

periods in obtaining the average outcomes before the intervention. In the current notation,

the event-study regression would add the terms Wi,t(i) · P1,t(i), ..., Wi,t(i) · Pc−2,t(i), where the

treatment dummy is interacted with all time period dummies except the one just prior to the

intervention in period t = c− 1. Adding these ‘pre-treatment’ indicators provides estimates

of the difference in period-to-period trends prior to the intervention.

Generally, the event-study estimators can be expected to be less efficient than the esti-

mators from procedure 3.1, because the latter uses all implications of the conditional parallel

trends assumption. The event-study estimators can show more resiliency against some vi-

olations of parallel trends, but they will be more sensitive to other violations. (The FLEX

approach might smooth out some of the violations of parallel trends, and event-study will be

especially sensitive to violations of parallel trends that occur just before the intervention.)

4 Regression Specifications

As the literature on methods for estimation of models for data with staggered entry into

treatment has grown rapidly, the nomenclature used to describe various techniques has also

proliferated. In naming methods, we think it is a) important to distinguish between the

estimands and the estimation methods, and b) to name the various estimators recently

developed for estimating models in ways that indicate functional distinctions. In terms of

the characteristics of the treatment effects parameters, some estimators assume homogeneous
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effects across cohorts and time. Others assume heterogeneity in one or the other dimension

but not both. Yet others allow for heterogeneous effects across both cohorts and time.

On the dimension of the parallel trends assumption, some estimators impose the parallel

trends assumption for all periods prior to treatment, i.e., they assume that the regression

specifications have only lagged treatment parameters. Other estimators impose the parallel

trends assumption only for one baseline period prior to treatment (typically the period

just preceding treatment) and the regression specifications include lag and lead treatment

parameters with the lag parameters being the coefficients of interest for the ATET. Such

models are often referred to as event-study models but that terminology corrupts definitions

of event-study models from other areas of the econometrics literature.

We clarify our own use of language and notation by formally specifying the regression

specifications we estimate using OLS to implement equation 3.1. In Equation 4.1 below,

we present a FLEX specification that explicitly displays all the regression parameters (and

associated variables). The lags line refers to the coefficients associated with treatment effects

at the cohort-year level in post-treatment periods. The coefficients in the leads refer to pre-

treatment differences between treated cohorts and the never-treated cohort except in one

“baseline” period (chosen, without loss of generality, to be the period prior to treatment

initiation, c − 1). When the parameters in leads are estimated, we refer to these as lags

and leads specifications. In lags without leads specifications, all lead coefficients are set

equal to zero. In other words, lags without leads specifications assume that all pre-treatment

differences between treated cohorts and the never-treated cohort are identically equal to zero.

These specifications include cohort and year fixed effects. These specifications also allow

covariates to enter additively and interacted with each lag, lead, and fixed effect indicators.
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E (Yit|Rg, Pt,xit)

=

ḡ∑
g=1

T∑
t=c

τgtWitRgPt +

ḡ∑
g=1

T∑
t=c

WitRgPt · (xit − x̄gt)κgt lags

+

ḡ∑
g=1

c−2∑
t=1

τgtWitRgPt +

ḡ∑
g=1

c−2∑
t=1

WitRgPt · (xit − x̄gt)κgt leads

+
G∑

g=1

βtRg +
T∑
t=2

ηtPt +
G∑

g=1

Rg · xitγg +
T∑
t=1

Pt · xitζt + xitπ (4.1)

Note that when covariates are interacted with treatment indicators, they are specified as

deviations from group means. However, when they are interacted with group and time

indicators, the raw values are used.

4.1 Aggregating the Treatment Effects

Rather than report a full set of treatment effect estimates for each treatment cohort and

year, it is common to aggregate the effects to the cohort level, to the time level, to the

exposure-time level (for staggered start), or most commonly to the aggregate level. One

could do this by simple averaging. For example, the immediate effects, τ̂gt, can be averaged

over time periods t = c, ..., T . The one-period dynamic effects, τ̂t,t+1, can be averaged over

t = c, ..., T − 1; and so on for each of the exposure lengths. To be precise, the aggregated

average treatment effect on the treated (ATET) corresponding to equation 4.1 is given by:

τ =
1

N

ḡ∑
g=1

T∑
t=c

ngt∑
i=1

[τgt (WitRgPt) + (WitRgPt · (xit − x̄gt))κgt] (4.2)

where ngt is the number of observations in the gth treated group in the tth time period and

N =
∑ḡ

g=1

∑T
t=c ngt. This simplifies to

τ =
1

N

ḡ∑
g=1

T∑
t=c

[ngtτgt] (4.3)

because x̄gt is de-meaned so that part of the equation sums to zero.

Note that τ is simply the average of the treatment effects over all treated observations

in all treated time periods. In specifications with no covariates, or covariates entered only

15



additively, or if the covariates are de-meaned (using the means of covariates for the treated

sample), then τ is also a weighted average of the cohort-year effects τgt, where each weight is

the sample size associated with each cohort and year, ngt. Standard errors for the unweighted

or weight averages are easy to obtain using standard software packages.

4.2 Other Approaches

As we mentioned previously, the two-step imputation method of Borusyak et al. (2024) using

the group dummies and the OLS regression on the group dummies using all of the data

produce numerically identical results. Moreover, if we include the pre-treatment indicators

then, without controls, we obtain a repeated cross-sections version of the Sun and Abraham

(2021) leads and lags event-study estimator that allows full heterogeneity by cohort and

calendar time.

There are some other approaches that have become popular in empirical research. Call-

away and Sant’Anna (2021) propose what are effectively leads and lag estimators because

there methods reduce to estimating many 2 × 2 DiDs using the never treated group as the

control group and the period just prior to the intervention as the control period. Without

covariates, the Callaway and Sant’Anna (2021) approach is identical to Sun and Abraham

(2021). With covariates, Callaway and Sant’Anna (2021) implement a regression adjustment

approach to estimation of the treatment effects.

A novel aspect of Callaway and Sant’Anna (2021) is that, with covariates, they allow

estimation methods other than linear regression adjustment. One estimator with nice ro-

bustness properties combines propensity score weighting with linear regression adjustment

(a version of IPWRA). Without the propensity score weighting the Callaway and Sant’Anna

(2021) approach is the same as running a fully saturated regression where the pre-treatment

interactions, Wi,t(i),c · Ps,t(i), s ≤ c − 2, and also interacted with the covariates, are added

to the regression in equation 3.12. The IPWRA estimator can have some resiliency to the

assumed linear functional form.

Another popular approach uses a stacked OLS procedure described in Cengiz et al. (2019)

and Wing et al. (2024). In each, the observations for each treated cohort are pooled with

the observations from the never-treated cohort to form a data set that are then appended to
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form one stack. Note that this includes separate time and group indicators for each cohort.

By doing so, a constant treatment effect difference-in-differences regression specification

with group and time fixed effects delivers unbiased estimates of the cohort-level treatment

effect. The issues reported by Goodman-Bacon (2021) and others do not apply. Then

each of these stacks is pooled and a regression that interacts each term in the standard

regression specification with stack indicators produces all cohort-level treatment effects in

one application of a regression procedure. Note that the same never-treated observations

are used multiple times (as many times as there are treated cohorts) so the standard errors

from typical regression software are questionable.

4.3 Heterogeneous Time Trends

Like the estimates obtained from procedure 3.1, the event-study estimates require a kind of

parallel trends assumption for consistency (Roth, 2022; Dette and Schumann, 2024). One

approach to accounting for violations of parallel trends that occur even after including con-

trols is to assume relatively simple heterogeneous trends in the absence of the intervention.

In particular, with at least two pre-intervention periods per treated cohort, one can include

in equation 3.12 interactions between the strata indicators, Si,t(i),j and a linear time trend, t.

The coefficients on the trend terms can be used to test for pre-trends Dette and Schumann

(2024). As shown in Wooldridge (2021) in the panel data case, such tests do not suffer from

‘contamination bias’, provided the covariates are included flexibly, as in equation 3.12. That

is because the imputation and OLS approaches continue to be identical.

Including group-specific trends can be costly in terms of precision because their inclusion

creates collinearity with the treatment indicators. Of course, using a pre-test to decide

whether to drop these terms can be problematic — just as when using the event-study

approach.

4.4 Practical Considerations

In this section we discuss several practical considerations when estimating difference-in-

differences models for data with repeated cross-sections, heterogeneous treatment effects,

and staggered timing. Estimating treatment effects in a difference-in-differences model is
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usually a two-step process. The first step is to estimate the treatment parameters of a model

and the second step is to aggregate some of those treatment parameters into estimated

average treatment effects. For example, estimating the average treatment effect on the

treated, or treatment effects by group or by time since the start of treatment. Some DID

software packages seamlessly combine these two steps into one, showing only a final average

treatment effect on the treated but not the intermediate step of estimating coefficients from a

regression model. Thinking about DID as a two-step process is useful because it clarifies that

there are two steps to decision making by the researcher, each with its own set of questions.

The set of questions for the first step revolves around identification of treatment effects

and model specification. How are the treatment effects identified? What level of hetero-

geneity is allowed, specifically, heterogeneity at the group or the cohort level? Should the

model assume that parallel trends holds in the pre period or allow for heterogeneous effects

across groups in each time period before treatment starts? To what extent should the model

specification control for covariates?

The set of questions for the second step includes answering the research question, pre-

senting the results, and describing the estent of the heterogeneity in the treatment effects.

After estimating the regression model, how should the estimated treatment coefficients be

combined to form an overall ATET? Should the treatment effects be aggregated to other

levels, for example, to show an event-study graph?

4.4.1 Estimation step

Our proposed FLEX approach also provides a useful modeling framework for all difference-

in-differences models. Our general approach to estimation is that least squares regression

can be used to estimate any flexible model, whether it is a flexible model with heterogeneous

treatment effects or a parsimonious model with homogeneous treatment effects. Treatment

effects can be heterogeneous with respect to time, group (or cohort), or both, and there can

additionally be heterogeneous treatment effects by covariates. Most existing methods can

be estimated with an OLS regression in the FLEX framework.

In our empirical examples, we explain when FLEX estimates the same treatment coeffi-

cients as other estimators.
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4.4.2 Basic modeling decisions

There are three main modeling decisions, which can be seen as whether to allow more or less

flexibility in the estimation step. They can also be seen as variations on equations 4.1. The

first decision is whether to allow heterogeneity at the group level or the cohort level, when

there are multiple groups per cohort. In our empirical examples, there are multiple states

(groups) that start the policy treatment in some years and so are in the same cohort. In

general we think that it is restrictive to impose homogeneity across all states that happen

to start their policy in the same year. Therefore, our model specifications are at the group

level. However, if the number of groups is large (e.g., 3, 000 counties), then one needs to

think harder about the tradeoffs between model flexibility and possible over-fitting.

A second decision is whether to model lags only or both lags and leads. We classify

treatment effects as being either lags (after the start of treatment) or lags and leads (including

allowing for separate effects of treated groups prior to treatment). The event-study approach,

which allows for different effects for treatment observations in the pre-treatment periods

than the control observations, is most flexible because it does not impose the conditional

parallel trends assumptions in the pre-treatment periods. Alternatively, one can impose those

assumptions and focus the modeling of heterogeneity to the time periods after the start of

treatment. A lags-without-leads model specification would assume that all coefficients in the

second rows of equation 4.1 are equal to zero.

The third is about how to include covariates. Covariates could be included separately as

additional controls or interacted with treatment effects. Interacting covariates with treat-

ment effects allows for further heterogeneity. This is a decision about whether to include the

third and fourth rows of equation 4.1 or to assume that some of those coefficients are zero.

The potential downside of this flexibility includes over-fitting. Alternatively, one can lead

on economic theory and knowledge of institutions to focus on jus tone or a few covariates

to interact with the treatment effects instead of all covariates. In our experience, including

interactions between treatment effects and covariates does not lead to larger standard errors.

There are two main reasons not to control for covariates. One is if those covariates

are endogenous. For example, if the treatment is a job training program and a covariate
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measures job skills, then the covariate is endogenous to the treatment. The other is if the

covariates are time invariant and at the group level. Such covariates would be swept up in

group fixed effects mechanically.

In the flexible specifications of the regressions, group-by-year treatment effects vary by

individual- and group-specific covariates. This is accomplished by interacting the group-

by-year indicator variables by the covariates. To interpret the coefficients on the indicator

variables for group-by-year as the treatment effects in such models, it is necessary to demean

the covariates in the interaction terms. Demeaning requires subtracting the group-by-year

means of each covariate from its individual-level values. In these flexible specifications, the

group and year fixed effects are also interacted with the covariates. But for these indicators,

the interactions are with the raw covariates, not the demeaned ones. In addition, the raw

covariates themselves are entered into the regression specification additively. We want to

emphasize that it is not necessary to de-mean the covariates to estimate the ATET. As long

as one is careful in combining the weighted average of the coefficients for the de-meaned

variables, the final ATET is identical.

4.4.3 Aggregation and graphing

After estimating treatment effects at the group-time level, researchers have several options

for how to present the results. One common approach is to aggregate to the time-since-

treatment level to create an event study plot. This is useful when estimating a lags and leads

model because one can plot the estimated difference between ever-treated groups and control

groups in each pre period. This provides a visual test of the parallel trends assumption. If

one suspects or wants to test for heterogeneity by calendar time or by group, one could

aggregate treatment effects to those levels and plot the results.

Researchers often want an overall ATET. This is easy to do in the FLEX approach. The

ATET is the weighted average of treatment effects, where the weights are the number of

treated observations in each group-time set in the post periods. We provide Stata code to

show how to do this after estimating the single regression model, including standard errors.
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4.4.4 Collapsing the data to the group level

When there are many individual observations for each group (or cohort), it is worth con-

sidering whether to collapse the data to the group (or cohort) level. The advantage is that

collapsed data run faster in weighted OLS while returning identical parameter estimates and

standard errors. If the data set is large, collapsed data could run considerably faster than

the original data set. However, if there are covariates, then collapsing the data may not

be feasible. The identity (identical covariates from WOLS with collapsed data to covariates

from OLS with non-collapsed data) only holds if you collapse not to the group-time level,

but for every possible combination of covariates for each group-time combination. Therefore,

the covariates must be discrete. For example, if there are 50 groups and 10 years of data,

then there are 500 group-time combinations. Now suppose there are three dummy variables,

which can be combined eight ways, that means that the data would be collapsed to 4000

possible group-time-covariate combinations. That could still be significantly smaller than

the original data set and faster to run, but the potential benefits of collapsing are small when

there are many covariates.

5 Empirical examples

We show two empirical examples using two different data sets that have features typical

for repeated cross-section data with a difference-in-differences study design. One measures

the effect of punitive substance use policies for expecting mothers on their mental health

outcomes. The other tests the effect of right-to-work laws on hourly earnings. For both

examples, the data are collected at the individual level, with individuals grouped within

states. The treatments are at the state level and the timing of the start of treatments is

staggered across several years. Although there are multiple years of data, these are not panel

data sets but instead are repeated cross sections. All covariates (other than state and year

fixed effects) are at the individual level. Therefore, both examples are typical of many DID

study designs and are appropriate for our theoretical results.
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5.1 Prior empirical literature

There is a large and rapidly expanding literature that uses difference-in-differences study

design to assess the effects of policy changes. Here we briefly mention just a few that are

most relevant to our two empirical examples. These are all repeated cross sections with

staggered timing of treatment, where the data and outcomes are at the individual level and

the treatment is at the state level.

Meinhofer et al. (2022) study whether punitive or priority prenatal substance use policies

affect neonatal drug withdrawal syndrome, other birth outcomes, and use of prenatal care.

They use data from the Healthcare Cost and Utilization Project for 46 states from 2008–

2018. The repeated cross-section data are at the state-year level, with weights equal to the

number of births in the state-year. Some states adopted either punitive or priority prenatal

substance use policies during the study period. They estimated several different DID models,

including basic two-way fixed effects, Sun and Abraham (2021) event study, and Callaway

and Sant’Anna (2021). Meinhofer et al. (2022) argue that punitive prenatal substance use

policies may exacerbate health problems, while priority policies may alleviate them. That is

exactly what they find, with babies in punitive states having significantly worse neonatal drug

withdrawal syndrome and babies in priority states having slight reductions in the probability

of low gestational age and low birth weight.

The second set of papers examine whether right-to-work laws affect wages, unionization,

and individual well-being. The National Labor Relations Act of 1935 allowed private-sector

workers to unionize and collectively bargain with employers (Makridis, 2019; Fortin et al.,

2023; Wexler, 2022). Furthermore, the National Labor Relations Act required that every

worker covered by the contract must pay dues to the union. The Taft-Hartley Act of 1947

allowed this federal National Labor Relations Act to be replaced by state laws. States could

therefore pass right-to-work Laws, which changed one important feature of unions. Workers

covered by the contract no longer had to pay union dues. By the end of the 1940s, twelve

states had adopted right-to-work Laws. There were seven more in the 1950s and 1960s, with

six more since 2000. The effect of right-to-work Laws has been shown to diminish paid union

membership over time, but the effects on employment and wages are mixed (Makridis, 2019;
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Fortin et al., 2023; Wexler, 2022).

Fortin et al. (2023) primarily use Current Population Survey data on individuals from

2003–2019 to compare unionization rates and wages. Their identification comes from changes

in right-to-work laws in six states over their study period. They estimate event study and

two-way fixed effects models, arguing that in their case the problems from TWFE should be

small. They find that right-to-work laws reduce both wages and unionization rates. Makridis

(2019) uses Gallop poll data and a similar study design to show that individual well-being

improved slightly in states that adopted right-to-work laws.

5.2 Prenatal substance use policies and BRFSS data

For an illustrative example of the difference-in-differences methods to measure the effect

of prenatal substance use policies, we use the Behavioral Risk Factor Surveillance System

(BRFSS) data from 2005–2018. The BRFSS is an annual survey by the Centers for Disease

Control and Prevention of about 400,000 adults in the United States about their risk behav-

iors, chronic health conditions, and use of preventive services. The representative sample

of women of child-bearing age (18–44) with at least one child from 34 states has 440,446

observations.

There is considerable variation in the timing of the start of the policy at the state level.

Between 2007 and 2018, 13 states enacted prenatal substance use policies. Idaho was the first

in 2007, then South Carolina followed in 2008 and Arizona in 2009. The remaining states

started their policies in 2012 (UT), 2013 (AL), 2014 (GA, MS, RI, TN), 2015 (NM), 2017

(CT, OH), 2018 (KY). That leaves 21 states in the control group. The full list of treated

and untreated states and the year prenatal substance use policies began are shown in Table

1.

The outcome of interest is the number of days that the mother has spent in good mental

health in the last month. It is plausible that the punitive prenatal substance use policies could

adversely affect a person’s mental health. This outcome variable has a mean of about 25.5,

meaning that most people are in good mental health most days. For illustrative purposes,

we control for a limited set of individual demographic characteristics. These include age,

race and ethnicity, educational attainment, and income. The mean age of the mothers in
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the sample is about 34 years old. We limited the sample to those aged 18–44 to focus on

mothers of child-bearing age. For the full table of descriptive statistics, see Table 2.

5.3 Right-to-work laws and CPS data

We use the Current Population Survey (CPS) to show an example of how to use difference-

in-differences methods to estimate the effect of state right-to-work laws on hourly earnings.

The U.S. Bureau of Labor Statistics fields the CPS to gather information about labor force

participation, wages, and demographics. Although the CPS collects data monthly, we use

the annual survey from 2008–2019. The representative sample of adults who have education

beyond high school (an associates degree, a bachelor’s degree, or an advanced degree) from

29 states has 973,578 observations.

Out of the 29 states in our sample, five states changed the law to become a right-to-

work state and 24 did not. The states that had passed right-to-work laws prior to 2002 are

excluded from our sample because they are treated before the start of our data collection. In

2012, Indiana and Michigan became right-to-work states. Later, Wisconsin, West Virginia,

and Kentucky passed right-to-work laws in 2015, 2016, and 2017, respectively. Although the

amount of variation in treatment is not enormous, it is more than sufficient to illustrate our

points and estimate treatment effects. The list of treated states, the year the right-to-work

law began, and the list of untreated states are shown in Table 3.

We estimate the effect of a change in the right-to-work laws on hourly earnings for those

with positive earnings, which ranges from nearly �0 to over �2,076 per hour. It is plausible

that right-to-work laws would directly affect earnings if it weakens unions by reducing their

revenue from dues. Among this sample of persons with non-zero reported earnings, the

median is �20 and the mean is �25. We have a limited set of covariates, including age,

gender, race and ethnicity, education, and marital status. The average age of persons in this

adult non-elderly sample is 44 years old. About 50 percent are women and 61 percent are

married. For the full table of descriptive statistics, see Table 4.
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5.4 Model specifications

We estimate a number of alternative specifications using OLS on the sample of repeated

cross-sectional observations beginning with the general specification in equation 4.1. In some

specifications, we incorporate cohort-level heterogeneity for the treatment effect parameters

and for the fixed effects to be absorbed. In other specifications, we incorporate group-level

heterogeneity for the treatment effect parameters and for the fixed effects to be absorbed.

In our examples, states are the groups, and collections of states that all started in the same

year define a cohort. We estimate specifications without covariates, with covariates entering

additively and with covariates fully interacted with treatment indicators and cohort and

year fixed effects. In a set of lags only models, we assume that all pre-treatment differences

between treated and control units are equal to zero, i.e., these specifications use indicators

for lags of treatment initiation only. In lags and leads specifications, we allow all periods

except one baseline period (which we specify as the period preceding initiation of treatment)

to have treatment indicators.

We show the results for both empirical examples in tabular (Tables 5 and 6) and graphical

form (Figures 1 and 2). The tables list the average treatment effect on the treated (ATET)

for a variety of model specifications. The top panel of each table shows results for lags only

models, which all assume that the pre-treatment effects equal zero. In practice, this means

that there are no separate coefficients for treatment and control in each pre-treatment period.

The lower panel of each table shows results for event-study models, which all assume that the

pre-treatment effect equals zero only in a single pre-treatment period, the baseline period.

In our examples, this baseline period is the period prior to the start of treatment. In practice

this means that there are cohort-by-time or group-by-time coefficients in the pre-treatment

periods as well as the post-treatment periods.

The models also differ in the estimand, estimator, model specification, and whether and

how covariates are included. The estimand for treatment effects varies widely across the

models. The simplest assumes that the treatment effects are constant (homogeneous), both

across groups and over time. This specification is commonly referred to as the two-way fixed

effects (TWFE) regression. It assumes a one-time homogeneous shift in the outcome due to

25



treatment. A second set of models estimates a separate effect for each point in time since the

event (event-time), as described in Sun and Abraham (2021), but are homogeneous across

groups (see the rows labeled Event time for the treatment heterogeneity in the lags and

leads models). Our preferred specifications, equivalent to imputation estimators, allow for

heterogeneous treatment effects over both groups or cohorts and event time. Note that the

use of TWFE to refer to the homogeneous effects specification is misleading because it does

not distinguish among a variety of estimands, each of which involve regression specifications

that include fixed effects along two dimensions, all of which are more general than the

homogeneous effect specification.

We want to emphasize one distinction made in the theoretical section because it is often

important in empirical work, and that is the difference between groups and cohorts. In these

examples, groups are defined by states because the policy-relevant laws are at the state

level. However, some states changed their laws in the same calendar year as other states.

When multiple states begin treatment at the same time, those states (groups) are in the

same cohort. The first example (prenatal substance use policies) has four states in the 2014

cohort, two in the 2017 cohort, and one each in seven other cohort years. Therefore, in this

example, it matters whether to allow heterogeneous treatment effects at the group level or

only at the cohort level. In the right-to-work example, all but one cohort have a single state,

making that distinction less important empirically.

Most of our models are estimated by ordinary least squares (OLS) on the repeated cross-

sectional sample of data. We also estimate treatment effects using two popular alternative

techniques, each of which is a popular way to resolve the issues arising from staggered entry

into treatment. One approach uses stacked samples of data, where the observations for

each cohort are first paired with all never-treated control observations, and then the cohort-

specific datasets are pooled (Cengiz et al., 2019; Wing et al., 2024). These stacked data

regressions can be used to estimate models with lags only or lags and leads specifications

of treatment coefficients. Another lags and leads model uses the method of Callaway and

Sant’Anna (2021) which implements a flexible regression adjustment estimator.

Finally, we made three different choices about how to include covariates for individual-

level characteristics. As a reminder, because the data are repeated cross-sections, although
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the sample populations are reasonably stable, the exact mean of individual-level variables

for any state will change slightly from year to year. We estimate specifications that exclude

covariates, or include covariates additively, or include covariates in a flexible way by interact-

ing all covariates with each lead and lag treatment coefficient, each group (or cohort) fixed

effect and each time fixed effect.

6 Results

6.1 Prenatal substance use policies

The outcome variable in the analysis of punitive prenatal substance use policies is mental

health status defined by the number of good mental health days in a month. The results in

Table 5 show that the ATET estimates are always negative, indicating that punitive prenatal

substance use policies lead to worse mental health for women. The best estimates are that

punitive prenatal substance use policies decreases the number of good mental health days

by 0.15. Given that the average number of bad mental health days among women in never-

treated states is 4.3 (the mean number of good days is 25.7), the estimate implies a 3.5%

increase in the number of bad mental health days.

The estimates are negative but not statistically significant when the homogenous (con-

stant) specification is used (“TWFE”). The estimates are also not statistically significant

in a lags and leads specification that allows for heterogeneous estimates in event-time but

homogeneous across groups. Also, in both lags only and lags and leads specifications, the

stacked data regressions, which allow for heterogeneous effects across event-time, produce

estimates that are not statistically significant. These results do not qualitatively differ in

specifications with and without covariates.

In more general regressions specifications in which treatment varies by cohort and year

or by group and year, the ATET estimates are negative and statistically significant at all

conventional levels. The point estimates are a bit larger in the cohort-by-year specifications as

compared to those in the group-by-year specifications. But the standard errors in the group-

by-year specification are consistently smaller than those in the cohort-by-year specifications.

These results can be seen in lags only and lags and leads specifications. It appears that
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the additional generality implied in the group-by-year heterogeneous specifications produces

treatment estimates with greater precision because there is substantial within-cohort (by

year) heterogeneity in outcomes.

The Callaway and Sant’Anna estimates, which allow for general heterogeneity at the

cohort-by-year level, are similar to those obtained using OLS. These estimates are also sta-

tistically significant but the standard errors are more than double the size of those obtained

in the group-by-year linear regression specifications estimated using OLS.

Another interesting pattern is that the ATET shrinks towards zero when covariates are

included additively, and shrink again when the included covariates are interacted with the

heterogeneous treatment effects. While this is not a universal finding, we have noticed in

numerous empirical examples that including covariates often changes the magnitude of the

ATET, while the standard errors either stay about the same or shrink.

We use our preferred FLEX specification, a linear-in-parameters model with heteroge-

neous treatment coefficients at the group-by-year level with covariates entering in a flexible

way (additively and via a full set of interactions), to calculate estimates of ATET at disag-

gregate levels of interest to researchers. In panels (a) and (b) of Figure 1, we show estimates

of ATET for each treated cohort, from lags only models in panel (a) and from lags and leads

models in panel (b). An eyeball check across the panels suggests substantial heterogeneity

across cohorts and also differences between the estimates from the lags only specification as

compared to the lags and leads specification. ATET estimates in each calendar year in a

selection of treated periods are shown in panels (c) and (d). These are remarkably similar

across the lags only specification (c) and lags and leads specification (d). The event study

plots shown in panels (e) and (f) are also revealing. Even though it appears that there is

evidence of pre-program effects (significant effects in pre-exposure years in panel (f)), the

effects in the treatment periods are quite similar across the lags only specification and the

lags and leads specification.

6.2 Right-to-work laws

The ATET of right-to-work laws on hourly earnings is negative across all our specifications

and methods (Table 6). Picking a typical value of the ATET of −.40 (forty cents), this
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means that hourly earnings fell by about 1.6% after the start of right-to-work laws were

passed, relative to the average earnings in never treated states of about �25.

The results show that the estimates of ATET from the homogeneous effects specification

are quite close to those obtained from specifications that allow for heterogeneous effects at

the event-time level and those that allow for cohort-by-year or group-by-year heterogeneity.

But the standard errors in the group-by-year specification are half the size of those in the

other specifications. These results can be seen in lags only and lags and leads specifications.

It appears that the additional generality implied in the group-by-year heterogeneous spec-

ifications produces treatment estimates with greater precision because there is substantial

within-cohort (by year) heterogeneity in outcomes.

The Callaway and Sant’Anna estimates, which allow for quite general heterogeneity at

the cohort-by-year level, are also similar to those obtained using regression specifications that

allow for cohort-by-year heterogeneity. These estimates are also statistically significant but

the standard errors are about twice as large as their OLS counterparts, and more than double

the size of those obtained in the group-by-year linear regression specifications estimated using

OLS.

Once again use our preferred FLEX specification, a linear-in-parameters model with

heterogeneous treatment coefficients at the group-by-year level with covariates entering in a

flexible way (additively and via a full set of interactions), to calculate estimates of ATET at

disaggregate levels of interest to researchers. On the left side of Figure 2, we show estimates

from lags only specifications while on the right side we show estimates from lags and leads

models. As in the case using data from the BRFSS, the ATET estimates at the cohort-level

are different across specifications. Yet, ATET estimates in each calendar year in a selection

of treated periods are remarkably similar across the lags only specification and lags and leads

specification. Notably, the event study plots shown in panels (e) and (f) show that the effects

in the treatment periods are quite similar across the lags only specification and the lags and

leads specification even though there appears to be evidence of pre-program effects.
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6.3 Computational time

Because we ran many different related models on the same data set, we kept track of the

computational time to generate the estimates. A comparison of computational time, in

relative terms, provides some insights into how long it would take to estimate these models

in cases where the data sets and model specifications are much larger. Clearly, the specific

amount of time will vary by computer memory, software, sample size, and model complexity.

Yet we found some patterns that are illuminating.

Using the lags only, heterogeneous group-by-year regression specification without covari-

ates as the benchmark for computational time, the additional computational time required

to include covariates additively is trivial in both empirical analyses. The specification that

allows for covariates to be fully interacted takes almost 17 times as much computational time.

Incorporating leads parameters into each specification (without covariates, with additive co-

variates and with covariates fully interacted) adds only a small amount of computational

time. The stacked-data regression specifications take about 6 times as much time as the

benchmark regression and, once covariates are additively introduced, computational time

increases to about 9 times relative to the benchmark. Overall, the stacked-data specifica-

tions require about half the computational time compared to our preferred heterogeneous

at the group-by-year with flexibly entered covariates specification, but, as we have shown

above, the flexibility and allowance for additional heterogeneity are of considerable empirical

value. Not surprisingly, the Callaway and Sant’Anna regression adjustment estimator takes

the most computational effort: 30–50 times as much time as the benchmark when the spec-

ification has no covariates and 30–60 times as much time when covariates are introduced.

Relative to the lags and leads specification with fully-interacted covariates estimated using

OLS, the regression adjustment estimator takes about twice the computational time.

7 Conclusions

Our paper makes several theoretical and practical contributions to the difference-in-differences

literature for the analysis of cross-sectional data. On the theoretical side, we prove that a

linear regression with a sufficiently flexible functional form consisting of group-by-time treat-
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ment effects, two-way fixed effects, and interaction terms yields consistent estimates of het-

erogeneous treatment effects. The estimates are efficient and aggregation of treatment effects

and inference are straightforward. The result holds when both the parallel trends and the no

anticipation assumptions are true. We prove that an event-study model with leads and lags

and appropriate interaction terms, estimated by ordinary least squares, returns numerically

identical results as the imputation method by Borusyak et al. (2024). The theoretical result

about repeated cross-sectional data is of importance to many applied researchers, because

data are often not balanced panel data.

On the empirical side, we demonstrated our FLEX methods with two publicly available

data sets to answer two research questions. Both empirical examples used individual-level

cross-sectional data with staggered treatment at the state level. In both examples, our

FLEX method and the imputation method obtained the same result. Our FLEX method

generally has smaller standard errors than other popular estimators. In summary, our FLEX

method has the advantage of being easy to implement, fast, and best among linear unbiased

estimators.
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Table 1: States with punitive prenatal substance use policies by cohort

Cohort States
Number of

Observations
2007 ID 9,732
2008 SC 15,297
2009 AZ 10,476
2012 UT 21,864
2013 AL 10,857
2014 GA, MO, RI, TN 36,096
2015 NM 12,102
2017 CT OH 26,191
2018 KY 13,566
Never treated AK CA DE HI IA KS ME MI

MS MT NE NH NJ NY NC OR
PA VT WA WV WY

284,265

Total 440,446

Notes: The repeated cross-sectional data are from the Behavioral Risk Factor Surveillance System (BRFSS)
data for 34 states and for 14 years from 2005–2018. A cohort comprises states that implemented the policies
in particular year. There are 10 cohorts (including a never treated cohort) labeled by the year in which they
are first treated. See section 5.2 for more details.

Table 2: Sample means by punitive prenatal substance use policies treatment status

Treated Never treated
Number of good mental health days 25.306 25.655
State has punitive prenatal substance use policies 0.390 0.000
Age 34.151 34.308
Black race 0.130 0.083
Hispanic ethnicity 0.128 0.130
Education level:

High school diploma or GED 0.260 0.245
Some college but no degree 0.315 0.299
Bachelors degree or higher 0.339 0.369

Annual household income (�’000s) 50.309 52.066
Observations 156181 284265

Notes: The repeated cross-sectional data are from the Behavioral Risk Factor Surveillance System (BRFSS)
data for 34 states in 10 cohorts (including a never treated cohort) and for 14 years from 2005–2018. See
section 5.2 for more details.
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Table 3: States with right-to-work laws by cohort

Cohort States
Number of

Observations
2012 IN MI 61,129
2015 WI 29,564
2016 WV 22,038
2017 KY 20,789
Never treated AK CA CO CT DE DC HI IL

ME MD MA MN MO MT NH NJ
NM NY OH OR PA RI VT WA

840,058

Total 973,578

Notes: The repeated cross-sectional data are from the Current Population Survey (CPS) data for 29 states
and for 12 years from 2008–2019. A cohort comprises states that implemented the policies in particular year.
There are 5 cohorts (including a never treated cohort) labeled by the year in which they are first treated.
See section 5.3 for more details.

Table 4: Sample means by right-to-work treatment status

Treated Never treated
Hourly earnings (�) 21.881 24.957
State has Right to Work law 0.485 0.000
Female 0.494 0.498
Age 43.946 43.467
Black race 0.066 0.084
Hispanic ethnicity 0.037 0.128
Education level:

Some college but no degree 0.173 0.156
Associates degree 0.129 0.109
Bachelors degree 0.215 0.256
Graduate or Professional degree 0.116 0.158

Married 0.643 0.605
Observations 133520 840058

Notes: The repeated cross-sectional data are from the Current Population Survey (CPS) data for 29 states
in 5 cohorts (including a never treated cohort) and for 12 years from 2008–2019. See section 5.3 for more
details.
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Table 5: ATET of punitive prenatal substance use policies on mental health

Effect heterogeneity Estimator Covariates ATET Std. err. p-value
Lags only models

Homogeneous OLS None -0.1520 0.1028 0.1487
Additive -0.1204 0.1080 0.2734

Cohort & Time OLS None -0.2463 0.0768 0.0030
Additive -0.2039 0.0724 0.0082
Flexible -0.2010 0.0677 0.0056

Group & Time OLS None -0.1899 0.0511 0.0007
Additive -0.1599 0.0516 0.0039
Flexible -0.1445 0.0451 0.0030

Event-time Stacked data None -0.1394 0.1062 0.1891
Additive -0.1229 0.1114 0.2698

Lags and leads models
Event time OLS None -0.1410 0.0928 0.1384

Additive -0.1312 0.1079 0.2323
Cohort & Time OLS None -0.2150 0.0588 0.0009

Additive -0.1917 0.0504 0.0006
Flexible -0.1835 0.0525 0.0014

Group & Time OLS None -0.1644 0.0424 0.0005
Additive -0.1567 0.0402 0.0005
Flexible -0.1453 0.0385 0.0006

Event time Stacked data None -0.1566 0.0983 0.1112
Additive -0.1416 0.1062 0.1824

Cohort & Time Callaway Sant’Anna None -0.2177 0.1007 0.0306
Flexible -0.2114 0.1018 0.0377

Notes: For models with heterogeneous effects, ATET is a weighted average of the estimand. Standard
errors of ATET are based on cluster (group) robust standard errors of the coefficients in the estimand. Some
regression specifications have no covariates (None), in some covariates enter only additively (Additive), while
in others covariates enter additively and interacted with the estimand coefficients and with cohort (or group)
and year indicators (Flexible). Regression models estimated with event-time effects as the estimands refer to
time relative to first year of treatment in the specification of the treatment coefficients. Stacked OLS refers
to regressions on samples of data in which each cohort is first associated with never-treated controls and
then the samples associated with each cohort are pooled (Cengiz et al., 2019). Callaway Sant’Anna refers
to a regression-adjustment estimator that uses a flexible regression specification to estimate the parameters
of the conditional mean model and an influence function approach to estimate the standard errors of the
estimates (Callaway and Sant’Anna, 2021).
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Table 6: ATET of right-to-work laws on hourly earnings

Effect heterogeneity Estimator Covariates ATET Std. err. p-value
Lags only models

Homogeneous OLS None -0.6457 0.2015 0.0034
Additive -0.4232 0.1767 0.0236

Cohort & Time OLS None -0.6516 0.2031 0.0033
Additive -0.4796 0.1546 0.0044
Flexible -0.3391 0.1301 0.0145

Group & Time OLS None -0.6687 0.1100 0.0000
Additive -0.4517 0.0893 0.0000
Flexible -0.3656 0.0757 0.0000

Event-time Stacked data None -0.6837 0.2053 0.0009
Additive -0.4565 0.1806 0.0115

Lags and leads models
Event time OLS None -0.6194 0.1640 0.0008

Additive -0.4052 0.1386 0.0068
Cohort & Time OLS None -0.5670 0.1809 0.0040

Additive -0.4057 0.1511 0.0120
Flexible -0.3031 0.1286 0.0256

Group & Time OLS None -0.5837 0.1161 0.0000
Additive -0.3812 0.1033 0.0010
Flexible -0.3171 0.0872 0.0011

Event time Stacked data None -0.6377 0.1739 0.0002
Additive -0.4201 0.1461 0.0040

Cohort & Time Callaway Sant’Anna None -0.5757 0.2063 0.0053
Flexible -0.2910 0.1377 0.0347

Notes: For models with heterogeneous effects, ATET is a weighted average of the estimand. Standard
errors of ATET are based on cluster (group) robust standard errors of the coefficients in the estimand. Some
regression specifications have no covariates (None), in some covariates enter only additively (Additive), while
in others covariates enter additively and interacted with the estimand coefficients and with cohort (or group)
and year indicators (Flexible). Regression models estimated with event-time effects as the estimands refer to
time relative to first year of treatment in the specification of the treatment coefficients. Stacked OLS refers
to regressions on samples of data in which each cohort is first associated with never-treated controls and
then the samples associated with each cohort are pooled (Cengiz et al., 2019). Callaway Sant’Anna refers
to a regression-adjustment estimator that uses a flexible regression specification to estimate the parameters
of the conditional mean model and an influence function approach to estimate the standard errors of the
estimates (Callaway and Sant’Anna, 2021).
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Table 7: Numbers of parameters estimated in the punitive prenatal substance use policies
on mental health application

Level of Main effects Interactions
Effect heterogeneity Estimator Covariates Lags Leads FE Lags Leads FE Total
Lags only models
Homogeneous OLS None 1 0 46 0 0 0 48

Additive 1 0 46 0 0 0 55
Cohort & Time OLS None 58 0 22 0 0 0 81

Additive 58 0 22 0 0 0 88
Flexible 58 0 22 406 0 154 648

Group & Time OLS None 75 0 46 0 0 0 122
Additive 75 0 46 0 0 0 129
Flexible 75 0 46 525 0 322 976

Event-time Stacked data None 12 0 414 0 0 0 427
Additive 12 0 414 0 0 0 434

Lags and leads models
Event time OLS None 12 12 46 0 0 0 71

Additive 12 12 46 0 0 0 78
Cohort & Time OLS None 58 59 22 0 0 0 140

Additive 58 59 22 0 0 0 147
Flexible 58 59 22 406 413 154 1120

Group & Time OLS None 75 59 46 0 0 0 181
Additive 75 59 46 0 0 0 188
Flexible 75 59 46 525 413 322 1448

Event time Stacked data None 12 12 414 0 0 0 439
Additive 12 12 414 0 0 0 446

Cohort & Time Callaway Sant’Anna None 58 59 234 0 0 0 468
Flexible 58 59 234 0 0 0 1287

Notes: The repeated cross-sectional data are from the Behavioral Risk Factor Surveillance System (BRFSS)
data for 34 states in 10 cohorts (including a never treated cohort) and for 14 years. As summarized in
Table 2, 7 covariates are used. Some regression specifications have no covariates (None), in some covariates
enter only additively (Additive), while in others covariates enter additively and interacted with the estimand
coefficients and with cohort (or group) and year indicators (Flexible). Regression models estimated with
event-time effects as the estimands refer to time relative to first year of treatment in the specification of the
treatment coefficients. Stacked OLS refers to regressions on samples of data in which each cohort is first
associated with never-treated controls and then the samples associated with each cohort are pooled (Cengiz
et al., 2019). Callaway Sant’Anna refers to a regression-adjustment estimator that uses a flexible regression
specification to estimate the parameters of the conditional mean model and an influence function approach
to estimate the standard errors of the estimates (Callaway and Sant’Anna, 2021).
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Table 8: Numbers of parameters estimated in the right-to-work laws on hourly earnings
application

Level of Main effects Interactions
Effect heterogeneity Estimator Covariates Lags Leads FE Lags Leads FE Total
Lags only models
Homogeneous OLS None 1 0 39 0 0 0 41

Additive 1 0 39 0 0 0 50
Cohort & Time OLS None 20 0 15 0 0 0 36

Additive 20 0 15 0 0 0 45
Flexible 20 0 15 180 0 135 360

Group & Time OLS None 28 0 39 0 0 0 68
Additive 28 0 39 0 0 0 77
Flexible 28 0 39 252 0 351 680

Event-time Stacked data None 12 0 156 0 0 0 169
Additive 12 0 156 0 0 0 178

Lags and leads models
Event time OLS None 12 12 39 0 0 0 64

Additive 12 12 39 0 0 0 73
Cohort & Time OLS None 20 24 15 0 0 0 60

Additive 20 24 15 0 0 0 69
Flexible 20 24 15 180 216 135 600

Group & Time OLS None 28 24 39 0 0 0 92
Additive 28 24 39 0 0 0 101
Flexible 28 24 39 252 216 351 920

Event time Stacked data None 12 12 156 0 0 0 181
Additive 12 12 156 0 0 0 190

Cohort & Time Callaway Sant’Anna None 20 24 88 0 0 0 176
Flexible 20 24 88 0 0 0 572

Notes: The repeated cross-sectional data are from the Current Population Survey (CPS) data for 29 states
in 5 cohorts (including a never treated cohort) and for 12 years. As summarized in Table 4, 9 covariates
are used. Some regression specifications have no covariates (None), in some covariates enter only additively
(Additive), while in others covariates enter additively and interacted with the estimand coefficients and with
cohort (or group) and year indicators (Flexible). Regression models estimated with event-time effects as the
estimands refer to time relative to first year of treatment in the specification of the treatment coefficients.
Stacked OLS refers to regressions on samples of data in which each cohort is first associated with never-
treated controls and then the samples associated with each cohort are pooled (Cengiz et al., 2019). Callaway
Sant’Anna refers to a regression-adjustment estimator that uses a flexible regression specification to estimate
the parameters of the conditional mean model and an influence function approach to estimate the standard
errors of the estimates (Callaway and Sant’Anna, 2021).
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Figure 1: Heterogeneous ATET of punitive prenatal substance use policies on mental health

(a) ATET by cohort: lags only
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(b) ATET by cohort: lags and leads
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(c) ATET by calendar year: lags only
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(d) ATET by calendar year: lags and leads
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(e) ATET by exposure year: lags only
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(f) ATET by exposure year: lags and leads
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Notes: Regression models estimated with a fully interacted specification with estimands specified at the
group by time level.
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Figure 2: Heterogeneous ATET of Right-to-work laws on hourly earnings

(a) ATET by cohort: lags only
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(b) ATET by cohort: lags and leads
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(c) ATET by calendar year: lags only
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(d) ATET by calendar year: lags and leads

-1

-.5

0

.5
Δ 

ho
ur

ly
 e

ar
ni

ng
s 

($
)

2012 2013 2014 2015 2016 2017 2018 2019
Calendar year

(e) ATET by exposure year: lags only
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(f) ATET by exposure year: lags and leads
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Notes: Regression models estimated with a fully interacted specification with estimands specified at the
group by time level.
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