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Abstract

Road traffic is the primary source of air pollution in urban areas, as well as an important source
of noise. It is increasingly regulated in Europe with noticeable positive effects on air quality
and health outcomes. Co-benefits of traffic regulations, such as increased physical activity, are
put forward to support the development of such policies. One co-benefit that has yet to be
documented is sleep despite being a key determinant of health. We consider a flagship traffic
policy in France, the Paris Respire campaign,1 that was implemented in 2016 and intends to
episodically reduce engine traffic related emissions across the city in targeted areas. We esti-
mate its impact on sleep by relying on personalised sleep tracker data capturing individuals’
sleep quantity and quality between 2015 and 2019 (N=938,386), and implementing a spatial
and temporal difference-in-differences framework. The policy decreased daily vehicular traffic
in target areas by 24.9% on average across the zones along with non-negligible temporal and
geographical spillover effects decaying with distance. Controlling for these spillover effects, we
estimate the impact of the policy increases the minutes of total sleep by 2.2% on the night
following the application of the policy. We discuss the possible pathways of air pollution and
noise pollution, with changes in traffic-related emissions likely being the driver of the effects of
the policy. The policy implications are that, if the policy were to be uniformly enforced every
weekend over a year, it would result in approximately 2 extra nights of 7-hour sleep inside a
target zone. This study offers valuable insights for policymakers and urban planners seeking
holistic approaches to improve urban well-being.
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1 Introduction
Motorised transportation is one of the largest contributors of poor air quality, accounting for
more than one-quarter of ambient air pollution in urban areas (Amato et al., 2014; Grange et
al., 2017). Petrol and diesel vehicles release a wide spectrum of pollutants, principally carbon
monoxide (CO), oxides of nitrogen (NOX), and particulate matter (PM10), prompting a growing
interest among economists in understanding the negative consequences of urban road traffic on in-
fant health (Currie & Walker, 2011; Beatty & Shimshack, 2014; C. Kang et al., 2024) and academic
performance (Heissel et al., 2020; Austin et al., 2019) among others. These concerns have catalysed
policy interventions ranging from direct user charges and standards (e.g. low emission zones) to
traffic bans to reduce traffic-induced pollution (Davis, 2015; Wolff, 2014; ?, ?). Despite the consid-
erable attention paid to air pollution effects, the relationship between traffic and population health
remains the focus of analysis (e.g. Simeonova et al., 2019; Gehrsitz, 2017; Margaryan, 2021; Pestel
& Wozny, 2021), with the indirect health and wider social impacts often being overlooked. As a
result, the co-benefits of the traffic-related interventions are underestimated. With over 90% of the
global population currently living in areas of poor air quality (World Health Organization, 2019),
gaining further insight on its relationship with determinants of health, such as sleep, is crucial in
further understanding and accounting for its wider societal and economic implications.

Sleep is a vital activity with a myriad of benefits, playing a pivotal role in maintaining health, bol-
stering productivity, enhancing cognitive function, and nurturing psychological well-being (Shrader
& Gibson, 2018). Sleep deprivation, the state of insufficient sleep, has been linked with negative
health and social outcomes, including elevated mortality risk (Cappuccio et al., 2010), engagement
in risky behaviours (Smith, 2016; Venkatraman et al., 2007), and lower academic performance
(Carrell et al., 2011). According to Hafner et al. (2017), the US loses the equivalent of around 1.2
million working days per year due to people not getting enough sleep, and insufficient sleep costs
the UK economy £40 billion each year, equivalent to nearly 2% of its GDP (RAND, 2018). Some
studies explore the role of environmental factors on sleep, such as ambient temperature (Minor et
al., 2020), noise pollution (Muzet, 2007), and air quality (Liu et al. 2021). Given the ubiquity
and necessity of sleep, and the value it adds to individuals’ health and well-being, the welfare
implications of any link between traffic and sleep in this setting are potentially enormous.

Motorised traffic could impact sleep mainly via two channels - air pollution and noise. Other
channels include greater physical activity induced by the pedestrianisation of roads during certain
hours. A large body of literature suggests that pollution exposure harms health and wellbeing,
leading to preventable mortality and morbidity (see Chen et al. (2017); Currie et al. (2014) for an
overview of the impact on a range of health outcomes), such as poor lung development (Gauderman
et al., 2004), and obesity risks (Deschenes et al., 2020). These health and well-being effects widely
impacts the economy, with consequences on productivity (Chang et al., 2016, 2019), crime (Bondy
et al., 2020), cognitive performance (Ebenstein et al., 2016; Zhang et al., 2018; Lavy et al., 2014),
and human capital formation (Austin et al., 2019; Currie et al., 2009). This creates large economic
costs not only with increased hospitalisations (e.g. Janke, 2014; Moretti & Neidell, 2011; McCre-
anor et al., 2007) leading to increased healthcare spending (Barwick et al., 2018; Deryugina et al.,
2019), but also through increased defensive medical spending (Deschênes et al., 2017), and losses
in labour supply (Zivin & Neidell, 2018; Graff Zivin & Neidell, 2012). Air pollution potentially
affects sleep quantity and quality through biological channels (e.g. through disturbances to distal
airways or neural inflammation) and behavioural channels (e.g. reducing exercise and reducing
exertion)

The Paris Respire policy, which was rolled out in 2016, offers a natural experiment through tempo-
rary pedestrianization regulations to study the relationship between traffic and sleep. We exploit
variations in traffic that only apply to certain days and times, and specific areas of the city. Our
paper also distinguished itself by using precise sleep data available at a large temporal scale across
the city of Paris. In order to establish a causal relationship between traffic and sleep,we adopt a
quasi-experimental approach, combined with advanced econometrics methods, to assess whether
exogenous changes in traffic impact individual-level sleep quality and quantity in Paris, taking into
account spatial and temporal spill-over. To the best of our knowledge, this study is the first to
examine the impact of traffic on sleep and sleep deprivation. Identifying these effects is challeng-
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ing due to numerous factors, which we aim to address in this paper. First, there are potential
endogeneity problems caused by residential sorting. Traffic is not randomly assigned across lo-
cations. Individuals may sort into areas of better air quality depending on their income, health,
or preference for noise or other factors (Chay & Greenstone, 2005; Moretti & Neidell, 2011). By
not accounting for residential sorting, unobserved determinants of sleep may bias the estimation
of the effect of pollution on sleep. Another challenge is that the effect of pollution on sleep might
be highly dependent on individual avoidance behaviours. Avoidance behaviour occurs when indi-
viduals choose to reduce their exposure to air pollution, such as using air filtration systems, or
being outdoors when air pollution is low (Neidell, 2009; Moretti & Neidell, 2011). This emphasises
the need for an estimation technique that permits for the isolation of the effects on sleep using
arguably exogenous changes in air quality.

Second, previous studies utilise sleep data collected from self-reported surveys or controlled labo-
ratory settings, and thus, suffer from several limitations. For example, surveys are at risk of recall
bias, are restricted in the detailed measurement of sleep, and often collected on a small sample.
Similarly, short-term laboratory findings are not generalisable beyond the controlled environment.
Recent systematic reviews (Liu, Wu, et al., 2020; Cao et al., 2021) emphasise the absence of a
causal study and highlight links between diverse study methodologies and subjective air pollution
and sleep measurements with uncertainty of a possible relationship between sleep and pollution. In
attempts to move beyond the limited precision and/or temporal resolution of measures employed
by previous studies, this paper draws on a unique and comprehensive sleep dataset consisting of
over half a million geolocated daily sleep observations from over 2,000 people using sleep-activity
mattresses across Paris between 2014 to 2019. These mattresses have pneumatic and sound sensors
which enable the measurement of a user’s respiratory rate, heart rate, body movements and snoring
patterns. As a result, this sleep dataset offers detailed measurements comparable to laboratory
studies through the identification of various indicators of sleep quality and quantity. Devices such
as this mattress, and other commercial wearable devices, are becoming increasingly ubiquitous and
provide observational studies with several empirical advantages over previous analyses2 (Banks,
2020). The high frequency spatial and temporal reference information not only allows for merg-
ing with complementary datasets, but also enables for in-situ analyses to quantify any observed
changes in sleep.

This paper’s central task is to provide the first systematic documentation of the impacts of changes
in air quality on sleep quality and quantity using a natural experiment. This is done through the
exploration of the effects of the Paris Respire in two stages. First, we evaluate the effectiveness of
the policy in reducing traffic, using road sensor data between 2014 and 2019. We leverage Paris
Respire to assess changes in traffic flows, at hourly and daily levels, observed on roads in car-free
zones with traffic observed outside of these areas across hours where the policy is operational and
inactive. The nature of this policy gives rise to two potential spillover effects: (a) Spatial spillovers,
and (b) Temporal spillovers. In the former case, it is plausible that the policy has indirect dis-
placement effects of traffic, and air pollution, on neighbouring geographical units. Similarly, in the
latter case, it is also plausible that individuals may change their travel patterns throughout the
day to adjust for the temporary closure of these areas. In both instances, we identify that these (a)
neighbouring areas, and (b) neighbouring hours may experience effects of the policy and, therefore,
without providing specific consideration to them we risk failing to identify the counterfactual trend.
Thus, we exploit the staggered and temporary introduction of Paris Respire across time and space
in a spatial difference-in-differences (DD) framework that also accounts for both potential spillover
effects (Butts, 2021).

The second stage of this paper focuses on estimating how the consequent changes in traffic im-
pact individuals’ sleep outcomes. To identify this effect, using the above-mentioned spatial DD
approach, we compare sleep observations from users in car-free zones against users outside of these
zones, across days where the policy was and was not in operation whilst accounting for potential
spillover effects. We estimate a daily time-series Poisson-regression model that includes day of
week, month, year, and individual fixed effects. The range of time fixed effects non-parametrically
absorb seasonal and temporal trends in pollution and sleep. The individual fixed effects capture

2There is increasing research suggesting that information from such devices ("wearables") can accurately detect
sleep (S. G. Kang et al., 2017; Zinkhan et al., 2014)

2



Work
ing

Pa
pe

r
observed and unobserved factors unique to each user, such as income, health status, mattress-use
and behavioural patterns, to the extent they do not vary over time. We also include extensive
controls for weather to capture time-varying environmental factors. The remaining variation asso-
ciated with the policy is likely to be independent from the numerous behavioural and environmental
factors that affect sleep.

The first set of results indicates that although hourly traffic and congestion reduce in certain areas
in response to Paris Respire, it is displaced to areas that do not implement the policy. Nonetheless,
the overall daily effects of the policy observes significant decreases in traffic volumes and conges-
tion. The second set of results confirm that, accounting for unusual sleep patterns, changes in
air-quality associated with traffic-changes induced by Pairs Respire lead to improvements in sleep
quality and quantity. We find no evidence of changes in sleep latency or fragmentation. Taken
together, the evidence points to a pattern of fairly wide effects of Pars Respire, such that the
population treated within the policy is not the only one that benefits.

The last part of the paper discusses the selection of the regulated zones and the potential mecha-
nisms between traffic and sleep. The idea of zones restricted to traffic was suggested by the Mairie
of Paris in 2003 but was only implemented gradually across Paris starting in 2016. While the
overall objective of the policy was to reduce noise and pollution, it is unclear how the different
zones were identified. We compare the noise in the various zones and their adjacent areas and
found no evidence of systematic bias. We also see only less than 1.5% movers between treated and
control zones over our 6 years of data. In terms of the mechanisms that explain our results, we
cannot determine whether traffic affects sleep via noise, air pollution, or both. However, using the
limited data available on pollution and noise, and based on the correlations between traffic, air
pollution, and noise, and considering that the policy is active only during the day, we argue that
the effect is likely driven by improvements in air quality during daytime hours.
This paper proceeds as follows. The subsequent section (Section 2) describes background informa-
tion on air pollution and traffic, and provides details of the policy leveraged, Paris Respire. This
is then followed by a detailed overview of the different datasets used (Section 3). Section 4 details
the empirical strategy. In Section 5, we present our results that describe the impacts of Paris
Respire on traffic and sleep. Section 6 outlines results from robustness and sensitivity checks. We
conclude in Section 7.

2 Institutional and Environmental Background
Paris is a city with a long history of poor air quality and systemic breaches of the European limit
value for nitrogen dioxide (NO2) (Font et al., 2019b; Petit et al., 2017; Bessagnet et al., 2005),
although the ambiant air quality had greatly improved by the start of the campaign with all the
European limit value for NO2 being met by the start of the campaign (Font et al., 2019a).
As part of the Mayor of Paris’ campaign in 2014, a greener and environmentally friendly transfor-
mation was lauded. One of her air pollution policies was the introduction of a temporary car-free
policy, Paris Respire, recognising the impact of traffic and congestion on air quality as a source
of large concern. The participating areas were announced and the policy was introduced in 2016.
Paris Respire involves the reduction of the number of cars in the city by restricting certain dis-
tricts (henceforth target zones) to motorised traffic on Saturdays, Sundays, and/or public holidays
during selective hours of a day (henceforth policy hours), generally between 10am and 6pm. We
refer to a day where the policy is introduced, for any length of time, as policy day. The pedes-
trianisation process affects roads across 26 districts. These districts are highlighted in Figure 1.
The majority of the districts affected are located in central Paris, and range from the touristic dis-
tricts of Champs-Élysées and Montmartre, to the dining and entertainment locale of Mouffetard.
The closure, depending on the district, is implemented over the summer or throughout the year
over certain days and/or hours of the week. There are exceptions to the prohibitions on vehicular
traffics. Taxis, buses, and delivery vehicles are allowed limited access to these areas provided that
they do not exceed a maximum speed of 20 kilometres per hour (kmph). During these closures,
the areas also remain accessible to residents with authorised vehicles. There is unlimited access to
those who are walking, cycling, or skating. Table 1 outlines the implementation details for each
target zone.
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Motorised traffic can be a source of air and noise pollution. Road transport accounts for a large
proportion of primary emissions, contributing up to 73% of nitrogen oxides (NOx) (Airparif, 2016),
while noise pollution from traffic appears to be concentrated around the roads (see Map XXX in
Appendix, Section A.3).
changes in traffic represent a unique proxy for changes in air quality. Figure 4 illustrates the high
correlations between traffic, measured as the number of vehicles, and the daily average of NOX

and NO2 concentrations over the study period. As expected, traffic is highly correlated with con-
centrations in Paris.

Figure 1: A map of Paris, France. Areas in yellow highlight all target zones that are part of the
Paris Respire pedestrianisation campaign. A full outline of the implementation can be found in
Table 1.

3 Data
The main datasets in this analysis consist of information on (a) hourly and daily road traffic, and
(b) individual daily sleep measurements. The structural characteristics and traffic information are
obtained from the Comptage Routier database provided by OpenParis3 (Direction de la Voirie et
des déplacements, 2019a) from 1 March 2014 to 31 March 2019. The information on geolocated
individual-level sleep characteristics is provided as proprietary data from the Sleep Tracking Mat
developed by health electronics company, Withings, from 16 October 2014 to 22 March 2019. Both
datasets are merged with meteorological data from MeteoFrance (MeteoFrance, 2020), using daily
weather measurements averaged across all meteorological monitoring stations, and air pollution
data from AirParif (Airparif, 2020), using inverse distance weighting.

Target zones from the policy are provided as polygon vectors in the Sectures Paris Respire dataset4
(Direction de la Voirie et des déplacements, 2019b). This geographical information is overlaid on
both traffic and sleep datasets to identify observations that fall inside and outside the target zone.
All spatial matching is conducted using qGIS 3.10.2 (QGIS.org, 2021).

Below, the emphasis is on describing the data on road traffic and sleep outcomes as these are the
main variables of interest. Table 2 outlines summary statistics for all aspects of our analysis, and
is further discussed below.

3Any rights in individual contents of the database are licensed under the Database Contents License (OpenData,
n.d.).

4This dataset identifies the polygon vector of each zone under the scheme, and further outlines its detailed
implementation and operation (i.e. the hours of operation, the days of implementation, etc.)
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3.1 Road Traffic Data
The traffic aspects are captured by fixed measurement sensors across the roads of Paris. Each
road is composed of various arcs represented by each sensor (henceforth referred to as road sen-
sor). This dataset contains hourly traffic measurements, such as traffic count and occupancy rate,
recorded by 3,320 sensors, providing 75,598,882 observations over our study period. This dataset
reports (1) traffic count (number of vehicles), and (2) occupancy rate. The occupancy rate, mea-
sured in percent, captures the flow of traffic and is provided as the percentage of the time, over an
hour, that the measuring road sensor is blocked by a vehicle. Therefore, we utilise this to build
a measure for estimated congestion as a fluidity-adjusted count of traffic. This is calculated by
multiplying the occupancy rate with the traffic count to obtain a weighted indicator of traffic. To
ensure our dataset only comprises working segments of each road, we use the Travaux perturbants
la circulation database (Direction de la Voirie et des déplacements, 2019c) to identify roadworks
and traffic disruptions during our period of interest on qGIS. This dataset is further collapsed at
the daily level to obtain daily mean traffic measurements at each road sensor (N=642,192).

Panel A of Table 2 outlines summary statistics for measures of traffic and shows that, on average,
the hourly traffic count is 559 vehicles (SD 562) per road sensor and the daily traffic count is 472
vehicles (SD 354) per road sensor. Figure 2 illustrates the intersection between road sensors and
target zones. Further descriptives, by policy variables, can be found in Appendix B Table 10.

Figure 2: A map of Paris, France. Thick lines represent roads which traffic is monitored. Orange
represents roads and zones in the target zones as part of the Paris Respire pedestrianisation
campaign. Brown lines represent road sensors that are not targeted by the policy.

3.2 Environmental Data
Meteorological data are available for 10 irregularly-spaced stations across Paris. This dataset
(N=18,850) includes daily measurements of temperature, precipitation, and relative humidity over
the period of our study. Panel C of Table 2 outlines summary statistics for weather across Paris.

Two main sources of pollution are considered in relation to traffic: air and noise. Air pollution mea-
surements are recorded across 54 irregularly-spaced monitoring stations at an hourly level across
Paris, among one only falls into a regulated zone. We use hourly measurements of NO2, NOx,
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PM2.5, and PM10 (N=3,387,168). This dataset is further collapsed at the daily level to obtain
daily average pollution measurements at each monitoring site (N=141,132). Panel B of Table 2
outlines summary statistics for measures of the four pollutants.

Noise pollution comes two different sources: an air pollution map at the XXX resolution from
Paris respire, and directly from monitoring stations that cover the post- and pre-policy periods.
The map, available in Appendix, is the latest noise map of air pollution concentrations in Paris.
We use it to compare air pollution pollution levels in the regulated zones versus their boundaries.
Hourly noise levels come directly from the noise pollution monitors from Bruit Paris.5 Only six
stations are permanent and provide noise data for our period of analysis, among which only one
falls into a regulated zone. Their locations is diplayed in a map in Appendix...

Table 2: Sample Descriptive Statistics. Panel A summarises all traffic characteristics across road
sensors at the hourly and daily level. The variables presented in Panel B refer to the measurements
of air pollution concentrations at all monitoring stations across the city. The weather variables
shown in Panel C are measured across all monitoring stations across the city. Panels D and E
summarise the sleep dataset, including user information and general sleep behaviours.

Mean SD Min Max N

A. Traffic Characteristics
Hourly Vehicles 559.34 562.32 0 33272 75,653,520
Hourly Congestion 52.27 112.94 0 33272 63,792,896
Daily Mean Vehicles 472.28 354.27 0.50 1588 642,192
Daily Mean Congestion 33.07 44 0 219.99 540,900

B. Pollution Characteristics (in μgm−3)
Daily Mean NO2 39.25 12.39 12.76 116.10 1,857
Daily Mean NOX 91.79 45.08 24.74 618.47 1,857
Daily Mean PM2.5 14.01 9.02 3.56 91.00 1,857
Daily Mean PM10 25.03 11.48 6.23 119.76 1,857

C. Weather Characteristics
Daily Precipitation (in mm) 1.73 4.14 0.00 55.67 1,885
Daily Mean Temperature (in ◦C ) 12.39 6.34 -4.73 30.27 1,885
Daily Relative Humidity (in % ) 72.83 11.20 39.00 97.00 1,885

D. User Characteristics
Age (in years) 39.45 11.31 19.00 94.00 511,309
Body Mass Index (BMI) 24.75 4.60 11.32 49.50 493,791
Height (in cm) 175.20 8.58 110.00 200.00 494,714
Weight (in kg) 76.33 16.76 40.00 198.00 493,922

E. Sleep Characteristics
Duration in bed (in mins) 492.91 78.50 193.00 779.00 511,309
Total sleep time (in mins) 415.54 85.13 0.00 759.00 511,309
Duration in deep sleep (in mins) 121.40 43.56 1.00 557.00 509,784
Duration in light sleep (in mins) 213.44 55.85 1.00 597.00 511,277
Duration in REM sleep (in mins) 82.71 28.01 1.00 346.00 501,059
Duration spent awake overall (in mins) 62.50 51.30 0.00 600.00 511,038
Sleep onset latency (in mins) 20.52 24.48 0.00 403.00 511,309
Sleep offset latency (in mins) 15.72 19.06 0.00 523.00 505,594
Sleep efficiency 0.84 0.12 0.00 1.00 511,309
Night efficiency 0.08 0.39 0.00 133.00 495,266

5https://rumeur.bruitparif.fr
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3.3 Sleep Data
We utilise sleep information from 2,365 users of Withings’ mattress (N=852,063). Each user’s sleep
observation is geo-coded through the connection between their mattress and a mobile application,
thereby providing the location of the sleep episode. This dataset consists of additional information
on user characteristics (e.g. age, sex, height, and weight) of each individual.

Time filtering of data/Data processing and criteria

To reduce the risk of including sleep observations from those suffering from insomnia, observations
from shift workers, or any other possible problems, outliers from the sleep data are removed by
applying inclusion filters to sleep duration, onset, and offset. We adopt inclusion criteria, applied
in Jonasdottir et al. (2021), for minimum and maximum allowable sleep duration used in prior
global observational sleep studies (3 hours<duration<13 hours) (Roenneberg et al., 2012). Sleep
entries are further filtered based on local timing onset and offset times. We apply the following
sleep timing filters, which removes all sleep observations with onset or offset times greater than one
and a half standard deviations away from the sample average computed separately for weekdays
and weekends:

• 21:31 ONSET WEEKDAYS 02:40

• 06:05 OFFSET WEEKDAYS 10:21

• 21:42 ONSET WEEKENDS 03:20

• 06:27 OFFSET WEEKENDS 11:33

To ensure that sleep estimates are representative of typical sleeping behaviour and that individuals
spend time in the area that their mat is located, we further require all participants to have a
minimum threshold of sleep observations (Jonasdottir et al., 2021), a minimum period of 4 weeks
(with at least 1 weekday and weekend night per week that amount to a minimum 8 nights per
user), and be adults over 19 years of age.

We choose to apply the same criteria as Jonasdottir et al. (2021) as they are the strictest, leaving
a final sample size of 543,432 observations from 2,158 users for analysis. The inclusion criteria
resulted in an attrition of 8.7% of users. Of all users, 72% are male, with an average age of
39.45 (SD 11.3). Panel D of Table 2 outlines the general characteristics of all users. We also run
sensitivity analysis using time filters adopted by Roenneberg et al. (2012), and Walch et al. (2016).

Sleep Characteristics

The Withings’ mattress records sleep activity through the presence of pneumatic and sound sensors,
and has been shown to correlate to laboratory sleep polysomnography (PSG) results (Rosa et al.,
2019). This provides an average respiratory rate, average heart rate, and the number of times an
individual wakes up in a single sleep episode. Each sleep episode is detailed by the duration (in
minutes) a user spends in the following states:

• In bed

• Total sleep time (TST)

• In rapid eye movement (REM) sleep

• In stages 1 and 2 of non-rapid eye movement (non-REM) sleep (light sleep)

• In stage 3 of non-rapid eye movement (non-REM) sleep (deep sleep)

• Total wake time (Wakefulness)

• Awake at night (Wake after sleep onset; WASO)

• To fall asleep (Sleep onset latency)
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• To wake up (Sleep offset latency)

The duration of sleep and its different phases can be used to construct several measures of quantity
and quality of sleep. Summary statistics for all sleep variables are outlined in Panel E of Table 2.
The average duration spent in bed, over the course of our sample, was 506.4 minutes (SD 80.4).
This is equivalent to approximately eight hours per user per night. In this time, users spent an
average of 404.7 minutes (SD 85.9) asleep (approximately 6.7 hours).

Total sleep time (TST) is the total amount of sleep from the time a user falls asleep until they
wake up. This includes all stages of sleep, including non-REM to REM sleep. A low TST may
suggest that a user slept for an insufficient period of time, whilst a long TST suggests prior sleep
deprivation. Sleep fragmentation, through recurrent awakenings or low duration quantities in sleep
stages, may result in non-restorative sleep even when normal TSTs are achieved. Therefore, it is
important to adopt a multi-faceted approach to assess sleep changes.

Sleep onset latency is the duration of the time between when the user is in bed until they fall
asleep. Likewise, sleep offset latency is the duration between a user waking up and getting out of
bed.

Sleep fragmentation is assessed through measures of wakefulness. Total wake time is the amount
of wake time during the total recording time in minutes after the sleep onset. This gives a general
estimation for overall quality of sleep. We further consider wake after sleep onset (WASO), which
refers to periods of wakefulness occurring after defined sleep onset and, thus, a better reflection of
sleep fragmentation than total wake time.

The detailed assessment of sleep quality requires two approaches. We first glean insights to sleep
quality by assessing sleep quantity in certain sleep phases (e.g. in REM and non-REM sleep).
Non-REM sleep is considered a direct measure of daytime alertness and the subjective refreshing
quality of sleep. Light sleep is the changeover between states of wakefulness and sleep, and is an
estimate of the degree of sleep fragmentation. This is the phase in which body maintenance occurs
(e.g. regulation of metabolism regulates) (Shrivastava et al., 2014). Deep sleep sees slower heart
rates and breaking, with the body relaxing and contributing to restfulness. During this phase,
our bodies secrete growth hormones associated with cellular rebuilding and repair (Shrivastava
et al., 2014). Finally, REM sleep is typically the dream state in which the brain is very active.
It is important for emotion regulation and memory - where peak protein synthesis occurs at the
cellular level (Shrivastava et al., 2014). Secondly, we calculate two additional variables to directly
assess sleep quality: Sleep efficiency and Night efficiency. Sleep efficiency is the ratio between the
time one spends asleep to the time one spends in bed. A value of 1 relates to a night where an
individual falls asleep as soon as they go to bed. Sleep efficiency gives an overall sense of how well
the patient slept, but it does not distinguish frequent, brief episodes of wakefulness. A low sleep
efficiency could result from long sleep latency and long sleep offset to time in bed, with otherwise
normal quantity and quality of sleep in between. Night efficiency is the ratio between the time
one spends awake at night to the time one spends asleep. A value of 0 relates to a night where an
individual does not wake up at any point at night, suggesting low wakefulness.

Appendix B Table 11 further outlines the key summary statistics for sleep variables across obser-
vations by policy variables. Appendix C Figure 8 illustrates the spread of users inside and outside
of target zones.

4 Identification Strategy
Our aim is to estimate the causal impact of the introduction of Paris Respire on sleep via im-
provements in air quality. Thus, there are two primary empirical objectives: (1) to assess whether
Paris Respire is effective at reducing traffic and, by extension, traffic-related emissions, and if it
is, (2) to assess the impact of this change on outcomes of nocturnal sleep. The staggered and
temporary introduction of pedestrianisation across districts in Paris presents a quasi-experimental
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design. This motivates our primary identification strategy, which deploys a reduced-form specifi-
cation exploiting policy-induced variations in air pollution in a difference-in-differences approach.
Since we exploit a policy defined by geographic boundaries, we choose to extend the classical DD
framework to account for the spatial nature of the policy. Butts (2021) demonstrates that the
traditional DD approach produces biased estimates when treatment effects crosses over borders.

Our treatment units (target zones) are districts that are part of the Paris Respire campaign.
However, due to the spatial nature of the policy, it is plausible that there are indirect effects on
neighbouring areas around target zones, and general equilibrium effects across the city. Non-target
districts, otherwise considered control units, that are close to target zones, may experience effects
of the policy and, therefore, would fail to identify the counterfactual trend as traditional control
units because their outcomes are affected by treatment (Butts, 2021). Additionally, changes in
treated units’ outcomes would not only reflect the effect of their own treatment status, but also
the effect from the treatment status of neighbouring units. This geographical displacement of
outcomes is referred to as spatial spillovers. As one example, traffic and congestion may not have
reduced overall but be displaced to the boundaries of each target zone. Similarly, in attempts
to avoid target zones, vehicles may take alternative routes which reduce the traffic around the
boundaries of each target zone. These localised spillover effects are, thus, important causal effects
themselves and prompt a semi-parametric estimation strategy using a set of distance bins from
target zones in 1km increments (e.g. being 0km, 0-1km, 1-2km, or >2km from a target zone).

Although the empirical models are nested in the above framework, we separately elaborate on em-
pirical strategies for each equation to uncover reduced form estimates because (a) the data do not
fully overlap as nocturnal sleep outcomes are measured at a daily level, while changes in traffic are
observed at an hourly level, and (b) omitted variable bias unique to each model requires different
controls.

4.1 Selection into Treatment
As with all natural experiments, there are possible selection biases that should be considered. First,
if mattress users have a preference, or a dislike of the policy, they may move ahead of the policy
implementation. The overall policy was suggested years before its implementation, and we cannot
exclude the possibility that certain users moved outside of Paris. However, the zones were gradually
announced and introduced, suggesting fewer opportunities to move across regulated zones. In our
dataset, less than 1.5% of the users moved between treated vs untreated zones between 2015 and
2016.6 Because the treatment is staggered and temporary, we do not exclude these users, and are
not concerned that self-selection into treatment could bias our estimates.
Second, it is possible that policymakers selected the zones based on their noise or pollution levels.
In the results section, we analyze air and noise pollution data to address this concern.

6Among the movers across treatment group, 62.5% moved from a regulated zone, to an unregulated zone.
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4.2 Impact on Traffic
We first investigate how effective Paris Respire is in reducing traffic in the following Poisson
regression7:

log(Ysh) = α+ βPolicyHoursh +
4∑

d=2

βd(MinDistanceBinsdh × PolicyHourh)

+ γPolicyDayst +
4∑

d=2

γdt(MinDistanceBinsdt × PolicyDayt)

+ τMeanTemperaturet + ρMeanPrecipitationt

+ ζAnnualCarFreeDay + St + θSensor + εsh (1)

where Ysh represents traffic across road sensor s on hour h. Traffic is measured as (1) a count of
the number of vehicles, and (2) a fluidity-adjusted count of the number of vehicles across sensor s.

PolicyHoursh equals to 1 if sensor s falls inside a target zone during in policy hour h. The param-
eter of interest is β, which assesses the change in traffic in target zones.8 PolicyHourh equals to 1
if Paris Respire is active somewhere in Paris in hour h. Whilst MinDistanceBinsdh are four mu-
tually exclusive indicator bins which equal to 1 if the sensor (s) falls into a predefined distance bin
d, where d = 1, 2, 3, 4, during policy hour h, and zero otherwise. These distances are in 1km incre-
ments that capture the minimum distance between sensor s and the nearest target zone during the
policy hour (illustrated in Figure 3). The interaction term, PolicyHourh ×MinDistanceBinsdh,
allows us to semi-parametrically identify the effect of non-additive spatial spillovers associated with
the policy as we move away from the target zone.9 Its inclusion removes any bias from the zone
effect (i.e. the direct effect estimate) without imposing any assumptions by estimating the average
spillover effects on treated and control units (Butts, 2021).

As the pedestrianisation is only operational over selected hours on certain days, observed traffic at
times before or after policy hours may also experience effects of the policy and negate them from
behaving as "true" control units similar to the spatial spillover effects discussed previously. Thus,
we include PolicyDayst to capture any potential temporal spillover effects on the day of the policy.
PolicyDayst equals to 1 if sensor s falls inside a target zone on day t when the policy is active at
any hour of the day, and zero otherwise. These temporal effects may be associated with changes in
individuals’ travel patterns throughout the day to adjust for the temporary closure of these areas.
For example, individuals may choose to use their vehicles in hours outside of the closure, displacing
traffic to other time periods of the day. Individuals may also decide to avoid motorised transport

7While Poisson models are more commonly applied in the health sciences literature to describe relative risk, they
are increasingly being adopted in economics due to their flexibility with non-linearity. Traditional approaches in the
economic literature have involved transforming the non-negative outcome variable (e.g. using logs or inverse hyper-
bolic sine), which commits to a nonlinear relationship and attempts to recast a multiplicative model as an additive
one. Additionally, any transformation suggesting nonnormality of the data, particularly skewness, can indicate a
nonlinear effect. In a linear regression, the mean of the dependent variable depends linearly on the independent
variables, with the assumption that the data is assumed to be normally distributed around the population regression
line (Wooldridge, 2010; Cameron & Trivedi, 2010). A Poisson model, a generalised linear model (GLM) with a log
link, extends linear regression by introducing (a) a link function that establishes a curve that characterises the mean
of the dependent variable as a function of the independent variables, and (b) a distribution that specifies how the
values of the dependent variable are dispersed around the mean given by the curve (Wooldridge, 1999; Cameron &
Trivedi, 2010). Specifically, it produces consistent estimates for the exponential model regardless of the distribution
of the error term and can even be used for noncount data (Wooldridge, 1999; Cameron & Trivedi, 2010; Silva &
Tenreyro, 2006; Wooldridge, 2010). Ciani and Fisher (2019) further argues that it is preferable to estimate such an
exponential model by Poisson Quasi Maximum Likelihood (QMLE) as it relaxes the requirement of statistical inde-
pendence of the error term. Thus, it circumvents the risk of confounding distributional and mean changes often seen
with running ordinary least squares (OLS) on a log-linearised model (Wooldridge, 1999). In short, instead of fitting
a straight line, a Poisson regression fits an exponential curve. In our case, an exponential curve providing relative
effects is both theoretically and empirically more appealing and produces more realistic practical recommendations.

8The exponentiated coefficients from a Poisson regression model are interpreted as Incidence Rate Ratios (IRR).
This provides a relative measure, a rate ratio, of the number of occurrences in the presence of an event compared to
the number of occurrences in the absence of an event. A value of 1 indicates that the ratio of events are equal, and
thus suggests no changes. Any deviation above and below this value can be interpreted as a percentage change.

9The term, PolicyHoursh, is equivalent to the collective interaction term, PolicyHourh ×MinDistanceBinsh1,
where d = 1 for road sensors inside a target zone.
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altogether.

PolicyDayt equals to 1 if Paris Respire is operational anywhere in Paris on day t, and zero other-
wise. MinDistanceBinsdt are two mutually exclusive indicator bins which equal to 1 if the sensor,
s, falls into predefined distance bins as defined previously during policy day t, and zero otherwise.
Therefore, the interaction term, MinDistanceBinsdt ×PolicyDayt, is included to estimate the
spatial decay associated with any temporal treatment effects.

Furthermore, to account for potential confounders, we control for a set of road sensor and seasonal-
ity fixed effects. Seasonality is particularly important for our analysis as traffic and vehicle use can
vary seasonally. St is a vector of seasonal effects controlling for cyclical variation (including day
of week, month, year, school holiday and bank holiday fixed effects). The vector can be expanded
as St =

∑7
DoW=2 μDoWDayOfWeekDoW +

∑12
m=2 νmMonthm +

∑5
y=2 ξyY eary + ρvHolidayv.

This approach is attractive because it is does not impose any assumption on how temporal effects
impact traffic, does not constrain the model to a specific functional form, and reduces the risk of
specification errors. Additionally, as seasonality is measured at a relatively fine scale, the flexibil-
ity inherited from such granular fixed effects also accounts for traffic changes that are driven by
behavioural changes. For example, a day during summer holidays may be different from a typical
day during the winter in a behavioural sense similar to how traffic may behave differently between
a day during the week and over the a weekend. Road sensor fixed effects (θSensor) controls for
potential non-time varying differences in roads that can confound the main effect, such as road
size and connectivity.

MeanTemperaturet represents the mean temperature in Celsius on day t. MeanPrecipitationt

represents the mean precipitation on day t. AnnualCarFreeDay equals one if day t is Paris’
Annual Car Free Day, an annual campaign where all roads in the city are pedestrianised. Finally,
εsh represents the standard idiosyncratic disturbance term.

Figure 3: A map of Paris, France. Thick lines represent roads which traffic is monitored. Orange
represents roads and zones in the target zones as part of the Paris Respire pedestrianisation
campaign. Purple represents roads and zones up to 1km from a target zone. Blue represents roads
and zones between 1km and 2km from a target zone. Brown lines represent road sensors that are
not targeted by the policy.

Whilst an hourly analysis is specifically insightful to the efficacy of the policy, for our purposes,
we also estimate the average daily effect of Paris Respire on traffic, and traffic-related emissions,
using the following equation:
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log(Yst) = α+ βPolicyDayst +

4∑

d=2

βd(MinDistanceBinsdt × PolicyDayt)

+ τMeanTemperaturet + ρMeanPrecipitationt

+ ζAnnualCarFreeDay + St + θSensor + εst (2)

where Yst represents traffic across road sensor s on day t. PolicyDayst, MinDistanceBinsdt, St,
θSensor, AnnualCarFreeDay, MeanTemperaturet, MeanPrecipitationt, and εst enter the model
as defined previously (Eq. 1).

In this instance, the parameter of interest is β, the coefficient on the indicator variable PolicyDayst,
which assesses the average treatment effect of the policy on traffic inside a target zone.

In all specifications, we use distance bins of 1km increments as our preferred specification. Sensi-
tivity tests are also conducted using a different distance increments. Additionally, we use robust
standard errors clustered at the sensor-day of week level to account for heteroskedasticity and
allow for arbitrary within-group and serial correlations at the road and day of the week level. We
cluster over individual road sensors as they represent the unit of analysis and as we observe several
observations per sensor per day. As the two-way strategy is theoretically and empirically more
conservative, it remains our preferred approach in the main identification.

4.3 Impact on Sleep
To assess the impact of any policy-induced variations in air quality, associated with traffic changes,
on daily sleep outcomes, we estimate the following Poisson regression equation that parallels Eq.
2:

log(Yit) = α+ βPolicyDayit +
4∑

d=2

βd(MinDistanceBinidt × PolicyDayt)

+ τMeanTemperaturet + ρMeanPrecipitationt + ηMeanHumidityt

+ ζAnnualCarFreeDay + St + θUser + εit (3)

where Yit represents the number of minutes user i spends in a sleep phase on day t. Sleep outcomes
considered include sleep quantity (i.e. the duration spent in bed, and the duration of overall sleep),
and sleep quality (i.e. the durations spent in deep sleep, in light sleep, in REM sleep, awake at
night, to fall asleep, and to wake up).

PolicyDayit equals one if user i falls inside a target zone on day, t, when the policy is active
at any hour of the day. The parameter of interest is β, the coefficient on the indicator variable
PolicyDayit, which assesses the change in sleep quantity in target zones.

Akin to Eq. 2, MinDistanceBinidt are indicator bins which equal to 1 if a user (i) falls into a
predefined distance bin d, where d = 1, 2, 3, 4, during policy day t, and zero otherwise. These
distances are in 1km increments that capture the distance between user u and the nearest target
zone. PolicyDayt is defined as above. Thus, as discussed above, the interaction term, PolicyDayt
×MinDistanceBinidt, allows us to semi-parametrically identify treatment effects as we move away
from the target zone.

We further control for a set of user and seasonality fixed effects. St remains a vector of seasonal ef-
fects controlling for cyclical variation (including day of week, month, year, school holiday, and bank
holiday fixed effects). This model benefits from the same advantages of using a flexible approach
as mentioned previously. The range of time fixed effects non-parametrically absorb seasonal and
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temporal trends in pollution and sleep. The user fixed effects (θUser) capture observed and unob-
served factors unique to each user, such as income, health status, mattress use, and behavioural
patterns, to the extent they do not vary over time.

Recent literature has identified relationships between weather and sleep outcomes, beyond those
associated with seasonality (e.g. Minor et al., 2020; Mattingly et al., 2021; Mullins & White, 2019;
Obradovich et al., 2017). Therefore, additional controls are included to account for weather-related
changes to sleep. MeanTemperaturet and MeanPrecipitationt are introduced as defined previ-
ously. MeanHumidityt represents the mean relative humidity, k on day t.

Again, AnnualCarFreeDay equals one if day t is Paris’ Annual Car Free Day. Finally, εit repre-
sents the standard idiosyncratic disturbance term.

We run a linear regression akin to specification Eq. 3 to estimate effects on non-count measures
of sleep (see Appendix D). In all specifications, we use robust standard errors clustered at the
user-day of week level to account for heteroskedasticity and allow for arbitrary within-group and
serial correlations at the user and day of the week level. We cluster over individual users as they
represent the unit of analysis.

4.4 Traffic, Air Pollution and Noise
A reduction in traffic is expected to reduce air and noise pollution. In an ideal setting, we would
use direct daily and noise pollution exposures that capture the high spatio-temporality of each
pollutant. However, the network of monitoring stations spread across Paris are sparse and do not
capture the spatial differences of pollution across the areas under the policy. The use of a sparse
network risks introducing measurement error, through the inaccurately accounting for regional
characteristics which affect noise and air pollution dispersion.

Using limited data on air and noise pollution, we examine correlations between traffic, air, and
noise pollution to understand to what extent traffic might affect either aspect, or both. Looking at
the design of the policy, we also argue that the traffic bans do not affect noise levels at night but
could have residual effects on air quality during nighttime. An element of this policy is introducing
a speed restriction of 20 kilometres (km) per hour (about 12.4 miles per hour). Studies have shown
that aerodynamic noise from vehicles are only present at speeds over 20 miles per hour (Nelson &
Phillips, 1998; Sandberg, 2001; Rasmussen & Donavan, 2009; Frost & Ison, 2007). This, coupled
with the policy only being operational during the day, allows us to mitigate any concerns of the
potential impact any changes in noise and light pollution may have on nocturnal sleep — enabling
the isolation of air pollution as our main channel of interest. Due to the association between traffic
and traffic-related air pollution, it is plausible that any effects observed are largely derived due to
changes in air pollution.

5 Results

5.1 Zones Characteristics

5.2 Policy Impact on Traffic
Table 3 outlines the results of the impact of Paris Respire on traffic outcomes, at an hourly level.
The number of vehicles per road sensor during a policy hour decrease by 55.1% in a target zone to a
statistically significant level (p<0.001). This reduction is also observed during non-policy hours on
a policy day, albeit at a smaller decrease of 30.1% (p<0.001). A parallel relationship is also present
when considering impacts on congestion, with a decrease of 61.5% during a policy hour (p<0.001)
and 56.3% during non-policy hours (p<0.001) on a policy day. Despite these reductions, there was
an increase in traffic outside of the target zones during policy hours. During these hours, traffic
increases by 54.0% (p<0.001) and congestion increases by 134.4% (p<0.001) across roads up to
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1km away from a target zone. This increases slightly to 65.0% (p<0.001) and 161.2% (p<0.001),
respectively, across roads between 1 to 2 km away from a target zone. Finally, traffic increases by
37.6% (p<0.001) and congestion increases by 79.6% (p<0.001) across roads over 2km away from a
target zone. Although this provides evidence of negative spatial spillover policy effects, our results
suggest that there was a decrease in traffic and congestion in non-policy hours. During this time,
traffic falls by 33.1% (roads between 0-1km), 38.4% (roads between 1-2km), and 35.3% (roads
>2km), while congestion falls by 63.0% (roads between 0-1km), 67.4% (roads between 1-2km), and
62.1% (roads >2km). All findings are statistically significant (p<0.001).

Table 3: Incidence Rate Ratios (IRR) of the effect of Paris Respire on traffic outcomes, per road
sensor. Traffic outcomes include (1) Traffic Count, the hourly number of vehicles per road sensor,
and (2) Congestion, an hourly fluidity-adjusted count of vehicles per road sensor. Regression results
correspond to Eq. 1.

Traffic Count Congestion

PolicyHour, β (in target zone) 0.449∗∗∗ 0.385∗∗∗
(0.084) (0.089)

PolicyHour x Distance 0-1km 1.540∗∗∗ 2.344∗∗∗
(0.0089) (0.036)

PolicyHour x Distance 1-2km 1.650∗∗∗ 2.612∗∗∗
(0.011) (0.049)

PolicyHour x Distance >2km 1.376∗∗∗ 1.796∗∗∗
(0.011) (0.036)

PolicyDay, β (in target zone) 0.699∗∗∗ 0.437∗∗∗
(0.017) (0.018)

PolicyDay x Distance 0-1km 0.669∗∗∗ 0.370∗∗∗
(0.0033) (0.0057)

PolicyDay x Distance 1-2km 0.616∗∗∗ 0.326∗∗∗
(0.0042) (0.0066)

PolicyDay x Distance >2km 0.647∗∗∗ 0.379∗∗∗
(0.0048) (0.0092)

Annual Car Free Day 0.879∗∗∗ 0.773∗∗∗
(0.0047) (0.012)

Mean Precipitation 0.999∗∗∗ 1.001∗∗∗
(0.000037) (0.000095)

Mean Temperature 1.003∗∗∗ 1.004∗∗∗
(0.000047) (0.00011)

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

Road Sensor FE Yes Yes

pseudo R2 0.569 0.504
N 75,624,141 6,3757,304
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4 shows the average daily impact of the policy on traffic. A day with pedestrianisation sees a
24.7% decrease in the daily average count of vehicles per road in the target zone (p<0.001). These
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treatment effects typically decay over distance, and while there are smaller reductions compared
to the target zones, we observe a greater gain outside of the immediate roads, with the number
of vehicles decreasing by 15.4% (p<0.001), 19.7% (p<0.001), and 21.6% (p<0.001) for roads with
distances 0-1km, 1-2km, and >2km from a target zone, respectively. Similar results are found
when considering the effects on daily congestion. Daily average congestion also falls by 42.8%
(p<0.001) in target zones on a policy day. We find further evidence of displacement effects, where
there is a decrease in congestion in the surrounding areas by 33.2% (roads between 0-1km), 38.7%
(roads between 1-2km), and 42.0% (roads >2km). We find all effect estimates to be statistically
significant (p<0.001).

Table 4: Incidence Rate Ratios (IRR) of the effect of Paris Respire on traffic outcomes, per road
sensor. Traffic outcomes include (1) Traffic Count, the daily average number of vehicles per road
sensor, and (2) Congestion, a fluidity-adjusted count of daily average vehicles per road sensor.
Regression results correspond to Eq. 2.

Traffic Count Congestion

PolicyDay, β (in target zone) 0.753∗∗∗ 0.572∗∗∗
(0.025) (0.038)

PolicyDay x Distance 0-1km 0.846∗∗∗ 0.668∗∗∗
(0.0094) (0.018)

PolicyDay x Distance 1-2km 0.803∗∗∗ 0.613∗∗∗
(0.0092) (0.018)

PolicyDay x Distance >2km 0.784∗∗∗ 0.580∗∗∗
(0.0099) (0.018)

Annual Car Free Day 0.910∗∗∗ 0.873∗∗
(0.018) (0.043)

Mean Precipitation 1.000 1.002∗∗∗
(0.00017) (0.00037)

Mean Temperature 1.003∗∗∗ 1.003∗∗∗
(0.00022) (0.00046)

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

Sensor FE Yes Yes

pseudo R2 0.429 0.355
N 642,178 540,891
Robust S.E. clustered by Road Sensor x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

5.3 Policy Impact on Sleep
We find that the decrease in daily traffic, and by extension policy-induced reduction in air quality,
results in changes in sleep quantity, and by extension, sleep quality across certain sleep phases (Ta-
ble 5). In general, with regard to sleep quantity, we observe that users in a target zone experience
a 2% (p<0.001) and 2.2% (p<0.001) increase in the number of minutes spent in bed and asleep
overall. This indicates that users gain sleep quantity on the night of a policy day. This gain is also
observed across distance, at an increasing rate. Users that slept up to 1km away from a target
zone benefit from a 2.5% (p<0.001) and 2.6% (p<0.001) increase in duration spent in bed and
overall sleep, respectively. Users between 1-2km away from a target zone gain 3.0% (p<0.001) and

16



Work
ing

Pa
pe

r
3.1% (p<0.001) in duration spent in bed and overall sleep, respectively (p<0.001). This increases
slightly for users over 2km away to 2.4% (p<0.001) and 2.5% (p<0.001).

Table 5: Incidence Rate Ratios (IRR) of the effect of Paris Respire-induced changes in air quality
on the number of minutes, in a sleep phase, per user. Regression results correspond to Eq. 3 with
duration in bed, total sleep, deep sleep, REM sleep, and light sleep as sleep outcomes.

In Bed Total Sleep Time Deep Sleep REM Sleep Light Sleep

PolicyDay, β (in target zone) 1.020∗∗∗ 1.022∗∗∗ 1.021∗∗ 1.030∗∗ 1.022∗∗∗
(0.0048) (0.0056) (0.0083) (0.0092) (0.0063)

PolicyDay x Distance 0-1km 1.025∗∗∗ 1.026∗∗∗ 1.028∗∗∗ 1.034∗∗∗ 1.028∗∗∗
(0.0034) (0.0042) (0.0066) (0.0075) (0.0048)

PolicyDay x Distance 1-2km 1.030∗∗∗ 1.031∗∗∗ 1.034∗∗∗ 1.041∗∗∗ 1.028∗∗∗
(0.0043) (0.0051) (0.0077) (0.0087) (0.0057)

PolicyDay x Distance >2km 1.024∗∗∗ 1.025∗∗∗ 1.026∗∗ 1.031∗∗ 1.028∗∗∗
(0.0049) (0.0061) (0.0086) (0.0096) (0.0075)

Annual Car Free Day 0.986∗∗ 0.986∗ 0.980∗ 0.991 0.988
(0.0049) (0.0062) (0.0093) (0.011) (0.0079)

Mean Temperature 0.999∗∗∗ 0.998∗∗∗ 0.997∗∗∗ 0.998∗∗∗ 0.999∗∗∗
(0.000057) (0.000072) (0.00011) (0.00013) (0.000086)

Mean Humidity 1.000∗∗ 1.000∗∗ 1.001∗∗∗ 1.000 1.000∗∗∗
(0.000022) (0.000027) (0.000044) (0.000048) (0.000034)

Mean Precipitation 1.000 0.998 1.000 1.001 0.999
(0.0011) (0.0014) (0.0022) (0.0025) (0.0017)

Day of Week FE Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes Yes

User FE Yes Yes Yes Yes Yes

pseudo R2 0.156 0.219 0.301 0.154 0.268
N 510,901 510,901 509,374 500,648 510,869
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Our assessment of non-duration based sleep quality indicators suggests that there are no statis-
tically significant changes associated (Table 6). We assess other phases of sleep, associated with
sleep latency and sleep fragmentation, in Table 7. Results document statistically non-significant
findings, suggesting that treatment effects do not translate to changes in users’ sleep fragmentation
and latency.

Taking average values for overall duration spent asleep and assuming 52 weeks per year, we cal-
culate the annual sleep effects implied by our estimates. If mean daily sleep per user is 415.54
minutes per night, an increase of 2.2% results is a gain of 9.14 minutes. Over the year, assuming
the policy is only implemented over the weekend, each user gains an additional 15.8 hours of sleep
(equivalent to 2.26 nights of 7-hours sleep).

5.4 Traffic, Air and Noise Pollution
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results correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes.

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.000667 0.00572
(0.0029) (0.0061)

PolicyDay x Distance 0-1km 0.000553 0.00327
(0.0023) (0.0051)

PolicyDay x Distance 1-2km 0.000906 0.0118
(0.0027) (0.0085)

PolicyDay x Distance >2km 0.000457 0.00311
(0.0031) (0.0056)

Annual Car Free Day -0.00119 0.00371
(0.0039) (0.0057)

Mean Temperature -0.000615∗∗∗ 0.000855∗∗∗
(0.000046) (0.00015)

Mean Humidity 0.0000153 -0.000141∗∗
(0.000017) (0.000054)

Mean Precipitation -0.00182∗ 0.00423∗
(0.00088) (0.0021)

Constant 0.851∗∗∗ 0.0796∗∗∗
(0.0014) (0.0040)

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.337 0.052
N 510,901 494,887
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset latency,
sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.982 0.966 1.003 1.048
(0.029) (0.029) (0.019) (0.035)

PolicyDay x Distance 0-1km 0.994 1.013 1.020 1.039
(0.024) (0.025) (0.016) (0.029)

PolicyDay x Distance 1-2km 0.979 1.018 1.013 1.034
(0.027) (0.028) (0.019) (0.033)

PolicyDay x Distance >2km 1.007 1.010 1.028 1.066
(0.033) (0.033) (0.021) (0.037)

Annual Car Free Day 0.948 0.933∗ 0.984 1.044
(0.036) (0.032) (0.022) (0.042)

Mean Temperature 0.998∗∗∗ 1.000 1.002∗∗∗ 1.006∗∗∗
(0.00046) (0.00045) (0.00029) (0.00053)

Mean Humidity 1.000 1.000 0.999∗∗∗ 0.998∗∗∗
(0.00017) (0.00017) (0.00011) (0.00020)

Mean Precipitation 1.010 1.005 1.024∗∗∗ 1.027∗∗
(0.0090) (0.0085) (0.0055) (0.0100)

Day of Week FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes

User FE Yes Yes Yes Yes

pseudo R2 0.239 0.230 0.331 0.268
N 504,886 510,884 510,630 494,894
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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6 Explore noise and air pollution pathways
A reduction in traffic can improve air quality as well as reduce noise. We explore the strength of
these two possible patways.

6.1 Traffic and Noise
Since 2016, the City of Paris measures noise with permanent and temporary noise stations.10
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7 Discussion
In this paper, we study the impact of the implementation of Pairs Respire, a temporary pedestri-
anisation policy in Paris in targeted zones, on traffic and sleep in Paris over the period from 2014
to 2019. We show that the policy reduces the levels of overall traffic and congestion at a daily
level. We subsequently provide evidence that sleep is sensitive to these changes.

Our results confirm that Paris Respire is an effective policy instrument to reduce the levels of traffic
and congestion during its implementation, within the targeted zones, by over 50%. However, there
is evidence of spatial displacement of traffic and congestion during policy hours. This is echoed
by findings of Sleiman (2021), who reports an increase in the occupancy rate and probability of
congestion associated with the pedestrianisation of the Parisian riverbank. Despite this, we demon-
strate that the average daily effect of the policy appears to be an overall decrease in traffic and
congestion by approximately 20% across all areas. This strongly suggests that these improvements
are associated with lower air quality standards. We further show that these improvements in air
quality translate into significant positive, albeit small, impacts on sleep, in terms of sleep quantity
and quality. However, we do not find evidence of possible impacts on other elements of sleep, such
as sleep fragmentation and latency. Nonetheless, small changes can lead to large impacts — World
Economic Forum (2019) estimates that a gain of one hour of sleep, moving from six to seven hours
a night, could add $226.4 billion to the US economy, $75.7 billion to the Japanese economy, $34.1
billion to the German economy, and $29.9 billion to the UK economy. We further extrapolate our
findings to estimate that we could gain an additional 2.3 days of 7-hours total sleep time each year,
if the policy were to be implemented every weekend. Using estimates from Shrader and Gibson
(2018), this is associated with a 0.95% in weekly earnings and translates to USD 744 in gains in
annual income per individual.

Ultimately, we present reduced form estimates that look at the impact of Paris Respire. We show
that Paris Respire impacts traffic and sleep outcomes across the city. While we believe that the
main channel is pollution, observed changes could also be associated with other behavioural re-
sponses that influence sleep. It could be argued that our identified changes in traffic influences
sleep through three potential channels: air, light, and noise pollution. While noise and light pollu-
tion have negative contemporaneous effects on sleep (Muzet, 2007; Liu, Ghastine, et al., 2020), the
operational hours of Paris Respire are restricted to the day and the policy enforces strict speed
limits which would translate into reduced road noise. Therefore, users’ nighttime exposure to light
and noise remains consistent with non-policy days and any variations accounted by the DD frame-
work and series of fixed effects. While we are unable to measure the direct impact of air pollution
on sleep, our results are consistent with both the impacts of traffic changes on air pollution (e.g.
Malina & Scheffler, 2015; Wolff, 2014; Grange et al., 2017), and the impacts of air pollution on
health (e.g. Currie et al., 2014). As we also demonstrate that traffic in Paris is highly correlated
with traffic-related emissions, we strongly speculate that these changes in individual-level sleep are
associated to changes in air quality.

We acknowledge two main caveats of our analysis. First, while the data on sleep episodes used in
this paper allow to precisely identify the residential locations of users, we are unable to estimate
precise air pollution exposure at these locations. This is due to the sparsity of the city’s pollution
monitoring network within the city, and also the absence of additional information on each users’
movement and activity patterns during the day. As air pollution varies temporally and spatially,
we are unable to assign precise exposure levels at the same spatial and temporal granularity of
the sleep data without making large assumptions that introduces errors into our analysis. Our
approach leverages an exogenous change that is beneficial in identifying a causal relationship, but
prevents us from identifying the dose-response relationship between air pollution and sleep. We
encourage future research to (a) identify potential inflexion points of pollution-sleep impacts to
support targeted policy approaches, and (b) further unravel the potential routes in which pollution
influences sleep.

Second, the access and adoption of sleep mattresses is not geographically or demographically uni-
form. Our dataset contains more people who are middle-aged and male, with a selection of users
who may be experiencing sleep issues (although sleep filtering would have removed abnormal ob-
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servations) or personally invested in their quality of sleep. The ownership of these devices may
also be associated with unobserved demographic factors, such as higher socioeconomic status or
physiological curiosity, possibly reducing the accuracy of our estimates. Thus, the magnitude of
our effect estimates are likely conservative.

Despite these caveats, our results of the impact of this policy on traffic and sleep have implications
to support environmental policies for policy makers and future research. Improvements in air
quality also garner gains in sleep. A continued evaluation of the relationship between sleep and
air pollution is required to ensure that interventions for air pollution, often designed for direct
health gains, are also optimised for gains in other social outcomes. Future research is needed to
investigate equitable policy, planning, and design innovations that alleviate the stress of increased
air pollution.
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A Data Summary

A.1 Environmental data
A.1.1 Air pollution data

A.1.2 Noise pollution data

Day Night
Zone ID Inside Rings Inside Outside

500m 1km 500m 1km
1 38.05 < 41.47 45.36 39.80 < 41.43 43.08
2 35.49 < 38.36 40.46 39.10 < 41.11 41.30
3 42.61 < 45.59 46.00 43.97 > 42.59 42.30
4 39.89 << 44.61 43.52 41.82 41.85 42.16
5 43.56 < 49.98 49.19 42.63 42.45 40.92
6 43.79 44.15 43.82 43.76 > 42.55 42.22
7 43.42 < 45.21 45.03 39.72 < 41.38 41.72
8 42.54 << 52.42 56.32 33.45 << 42.33 45.56
9 40.82 41.23 40.80 40.95 41.17 41.31
10 45.68 << 52.39 49.74 36.54 << 41.75 41.87
11 56.72 >> 50.42 50.00 47.43 > 42.70 42.47
12 48.62 48.01 47.41 43.00 > 41.74 41.81
13 43.70 > 42.37 45.20 42.03 42.77 42.74
14 47.34 < 48.45 49.71 41.16 < 42.81 42.92
15 39.61 < 41.84 44.15 40.25 < 41.78 41.79
16 49.09 < 50.38 51.27 42.44 42.95 42.38
17 54.17 > 52.25 52.02 44.84 > 42.36 43.40
18 35.82 < 40.16 43.24 40.68 41.48 41.50
19 55.80 > 54.13 53.54 51.69 >> 42.82 45.67
20 55.43 54.91 50.22 40.34 < 42.63 42.01
21 39.73 < 41.10 42.10 40.50 < 42.02 42.35
22 62.69 >> 44.60 47.07 51.67 >> 39.98 42.75
23 37.80 < 41.46 42.86 41.66 41.61 41.83
24 44.67 < 46.98 43.88 44.17 > 42.67 41.65
25 42.51 41.51 42.40 42.77 > 41.47 42.11
26 38.24 < 39.99 42.86 43.40 > 41.28 42.41

A.2 Air Quality and Traffic

A.3 Noise and Traffic
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Figure 4: The average of air pollution, for two pollutants, between 2014 and 2019 in Paris against
the average of traffic (number of vehicles) around ten monitoring stations. Traffic is assigned to a
monitoring station as a weighted average using inverse distance weighting of road sensors within a
50m radius of each station. The black line maps the number of vehicles, across the second x-axis,
with the daily average pollution measurements, across the second y-axis. Pearson’s correlation
coefficient between traffic and daily pollution provided in the left bottom corner of each graph for
each pollutant. Pollution data is provided by AirParif. Stars represent p-values: * p < 0.05, **
p < 0.01, *** p < 0.001.
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B Descriptive Statistics

Table 9: The frequency of observations across treatment distance groups for sleep and traffic

Frequency Percent

Sleep Users
No Policy 429,175 83.94
During Policy, 0m 4,333 0.85
During Policy, 0-1km 62,512 12.23
During Policy, >1km 15,289 2.99
Road Sensors, Daily
No Policy 1,064,375 82.96
During Policy, 0m 1,953 0.15
During Policy, 0-1km 92,673 7.22
During Policy, >1km 123,965 9.66
Road Sensors, Hourly
No Policy 131,389,124 91.51
During Policy, 0m 83,317 0.06
During Policy, 0-1km 4,341,676 3.02
During Policy, >1km 7,758,172 5.40

Table 10: Descriptive statistics: Traffic characteristics across all users in sample across Paris,
France (2014-2019)

Mean SD Min Max N

A. Treatment, No Policy
Hourly Vehicles 558.80 565.30 0.00 33272.00 69,169,245
Hourly Congestion 53.03 114.55 0.00 33272.00 58,320,845
Daily Mean Vehicles 483.82 359.31 1.00 1588.00 530,070
Daily Mean Congestion 34.99 45.28 0.00 219.99 445,691

B. Treatment, During Policy 0km
Hourly Vehicles 240.49 558.42 0.00 7212.00 83,317
Hourly Congestion 19.43 98.60 0.00 2255.98 83,317
Daily Mean Vehicles 512.57 372.65 4.00 1579.00 801
Daily Mean Congestion 30.40 38.48 0.00 216.24 691

C. Treatment, During Policy 0-1km
Hourly Vehicles 590.20 459.71 0.00 8418.00 2,808,002
Hourly Congestion 49.41 85.81 0.00 2220.90 2,382,327
Daily Mean Vehicles 441.29 319.96 1.00 1588.00 57,917
Daily Mean Congestion 27.49 37.85 0.00 219.98 49,421

D. Treatment, During Policy >1km
Hourly Vehicles 553.08 574.98 0.00 10850.00 3,592,956
Hourly Congestion 40.83 99.11 0.00 3216.99 3,006,407
Daily Mean Vehicles 390.67 325.03 0.50 1588.00 53,404
Daily Mean Congestion 20.31 33.59 0.00 219.95 45,097
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Table 11: Descriptive statistics: Sleep episode characteristics across all users in sample across
Paris, France (2014-2019)

Mean SD Min Max N

A. Treatment, No Policy
Duration in bed (in mins) 488.41 78.61 196.00 779.00 429,175
Total sleep time (in mins) 411.89 84.59 0.00 757.00 429,175
Duration in deep sleep (in mins) 120.45 43.28 1.00 557.00 427,914
Duration in light sleep (in mins) 211.47 55.48 1.00 597.00 429,148
Duration in REM sleep (in mins) 81.94 27.86 1.00 346.00 420,653
Total wake time (in mins) 61.85 50.76 0.00 599.00 428,937
Sleep onset latency (in mins) 20.37 24.17 0.00 398.00 429,175
Sleep offset latency (in mins) 15.66 18.94 0.00 420.00 424,329
Duration spent awake at night (in mins) 26.79 37.17 0.00 598.00 415,795
Sleep efficiency 0.85 0.12 0.00 1.00 429,175
Night efficiency 0.08 0.34 0.00 118.00 415,785

B. Treatment, Policy 0km
Duration in bed (in mins) 517.20 74.80 220.00 772.00 4,333
Total sleep time (in mins) 433.90 87.76 39.00 690.00 4,333
Duration in deep sleep (in mins) 124.26 43.18 4.00 360.00 4,326
Duration in light sleep (in mins) 224.03 54.70 27.00 590.00 4,333
Duration in REM sleep (in mins) 87.38 28.50 1.00 220.00 4,255
Total wake time (in mins) 63.48 49.80 1.00 448.00 4,332
Sleep onset latency (in mins) 18.71 22.89 0.00 192.00 4,333
Sleep offset latency (in mins) 16.04 18.57 0.00 200.00 4,282
Duration spent awake at night (in mins) 30.43 39.83 0.00 377.00 4,153
Sleep efficiency 0.84 0.13 0.08 1.00 4,333
Night efficiency 0.09 0.23 0.00 7.49 4,153

C. Treatment, Policy 0-1km
Duration in bed (in mins) 516.32 73.26 196.00 779.00 62,512
Total sleep time (in mins) 434.53 84.93 0.00 759.00 62,512
Duration in deep sleep (in mins) 126.90 44.96 2.00 437.02 62,309
Duration in light sleep (in mins) 223.21 56.74 1.00 594.00 62,508
Duration in REM sleep (in mins) 86.66 28.46 1.00 300.00 61,195
Total wake time (in mins) 66.48 53.93 0.00 600.00 62,483
Sleep onset latency (in mins) 21.78 26.43 0.00 403.00 62,512
Sleep offset latency (in mins) 16.02 19.58 0.00 523.00 61,917
Duration spent awake at night (in mins) 29.70 39.51 0.00 578.00 60,678
Sleep efficiency 0.84 0.12 0.00 1.00 62,512
Night efficiency 0.09 0.58 0.00 133.00 60,676

D. Treatment, Policy >1km
Duration in bed (in mins) 516.51 74.57 193.00 772.00 15,289
Total sleep time (in mins) 435.14 86.59 0.00 749.00 15,289
Duration in deep sleep (in mins) 124.82 43.78 1.00 376.00 15,235
Duration in light sleep (in mins) 225.85 56.79 5.00 594.00 15,288
Duration in REM sleep (in mins) 86.81 28.43 1.00 252.00 14,956
Total wake time (in mins) 64.38 54.75 0.00 556.00 15,286
Sleep onset latency (in mins) 20.01 25.18 0.00 284.00 15,289
Sleep offset latency (in mins) 15.98 20.13 0.00 368.00 15,066
Duration spent awake at night (in mins) 29.85 40.36 0.00 432.00 14,653
Sleep efficiency 0.84 0.13 0.00 1.00 15,289
Night efficiency 0.09 0.64 0.00 60.80 14,652
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Figure 5: Histogram showing the distributions for various elements of sleep durations (in minutes)
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Figure 6: Noise Monitoring stations identified in black
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Figure 7: Air Pollution Monitoring stations identified in black

Figure 8: A map of Paris, France. Dots represent roads which traffic is monitored. Yellow polygons
represent target zones. Orange dots represents users in the target zones as part of the Paris Respire
pedestrianisation campaign. Brown dots represent users that are not targeted by the policy

D Specification for linear regressions using non-count mea-
sures of sleep

Yit = α+ βtPolicyDayit +

3∑

d=2

βdt(MinDistanceBinidt × PolicyDayt)+

+ τMeanTemperaturet + ρMeanPrecipitationt

+ ζAnnualCarFreeDay + ηMeanHumidityt + St + θUser + εit (4)

where Yit represents a sleep outcome for user, u, on day t. Sleep quality outcomes considered
here include: the ratio between the time a user spends asleep against the time spent in bed (sleep
efficiency), the ratio between the time spent awake at night against the total time spent asleep
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(night efficiency), and the number times a user wakes up during a single sleep episode.

PolicyDayit, PolicyDayt, MinDistanceBinidt, MeanTemperaturet, MeanPrecipitationt, MeanHumidityt,
AnnualCarFreeDay, and εit are defined as before.

Similar to the other models, we use distance bins of 1km increments as our preferred specification.
Sensitivity tests are also conducted using different distance increments.
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E Sensitivity Analyses: Distance Indicator Bins

E.1 Impact on Sleep

Table 12: Incidence Rate Ratios (IRR) of the effect of Paris Respire on the number of minutes, in a
sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset latency,
sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.982 0.966 1.003 1.048
(0.029) (0.029) (0.019) (0.035)

PolicyDay x Distance 0-1km 0.994 1.013 1.020 1.039
(0.024) (0.025) (0.016) (0.029)

PolicyDay x Distance >1km 0.989 1.015 1.019 1.045
(0.027) (0.027) (0.018) (0.032)

Annual Car Free Day 0.948 0.933∗ 0.985 1.045
(0.036) (0.032) (0.022) (0.042)

Mean Temperature 0.998∗∗∗ 1.000 1.002∗∗∗ 1.006∗∗∗
(0.00046) (0.00045) (0.00029) (0.00053)

Mean Humidity 1.000 1.000 0.999∗∗∗ 0.998∗∗∗
(0.00017) (0.00017) (0.00011) (0.00020)

Mean Precipitation 1.010 1.005 1.024∗∗∗ 1.027∗∗
(0.0090) (0.0085) (0.0055) (0.0100)

Day of Week FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes

User FE Yes Yes Yes Yes

pseudo R2 0.239 0.230 0.331 0.268
N 504,886 510,884 510,630 494,894
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes.

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.000665 0.00566
(0.0029) (0.0061)

PolicyDay x Distance 0-1km 0.000555 0.00329
(0.0023) (0.0051)

PolicyDay x Distance >1km 0.000731 0.00841
(0.0026) (0.0065)

Annual Car Free Day -0.00120 0.00365
(0.0039) (0.0057)

Mean Temperature -0.000615∗∗∗ 0.000855∗∗∗
(0.000046) (0.00015)

Mean Humidity 0.0000153 -0.000141∗∗
(0.000017) (0.000054)

Mean Precipitation -0.00183∗ 0.00422∗
(0.00088) (0.0021)

Constant 0.851∗∗∗ 0.0796∗∗∗
(0.0014) (0.0040)

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.337 0.052
N 510,901 494,887
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset latency,
sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.982 0.966 1.003 1.048
(0.029) (0.029) (0.019) (0.035)

PolicyDay x Distance 0-2km 0.992 1.014 1.019 1.038
(0.024) (0.025) (0.016) (0.029)

PolicyDay x Distance >2km 1.007 1.010 1.028 1.066
(0.033) (0.033) (0.021) (0.037)

Annual Car Free Day 0.948 0.933∗ 0.985 1.045
(0.036) (0.032) (0.022) (0.042)

Mean Temperature 0.998∗∗∗ 1.000 1.002∗∗∗ 1.006∗∗∗
(0.00046) (0.00045) (0.00029) (0.00053)

Mean Humidity 1.000 1.000 0.999∗∗∗ 0.998∗∗∗
(0.00017) (0.00017) (0.00011) (0.00020)

Mean Precipitation 1.010 1.005 1.024∗∗∗ 1.027∗∗
(0.0090) (0.0085) (0.0055) (0.0100)

Day of Week FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes

User FE Yes Yes Yes Yes

pseudo R2 0.239 0.230 0.331 0.268
N 504,886 510,884 510,630 494,894
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes.

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.000665 0.00565
(0.0029) (0.0061)

PolicyDay x Distance 0-2km 0.000601 0.00439
(0.0023) (0.0051)

PolicyDay x Distance >2km 0.000459 0.00314
(0.0031) (0.0056)

Annual Car Free Day -0.00120 0.00366
(0.0039) (0.0057)

Mean Temperature -0.000615∗∗∗ 0.000855∗∗∗
(0.000046) (0.00015)

Mean Humidity 0.0000153 -0.000141∗∗
(0.000017) (0.000054)

Mean Precipitation -0.00183∗ 0.00421∗
(0.00088) (0.0020)

Constant 0.851∗∗∗ 0.0796∗∗∗
(0.0014) (0.0040)

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.337 0.052
N 510,901 494,887
Standard errors in parentheses
Robust S.E. clustered by UserID x Day of Week
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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F Sensitivity Analyses: Alternative Sleep Filters

F.1 Using Roenneberg et al. (2012)

Table 16: Incidence Rate Ratios (IRR) of the effect of Paris Respire-induced changes in air quality
on the number of minutes, in a sleep phase, per user. Regression results correspond to Eq. 3 with
duration in bed, total sleep, deep sleep, REM sleep, and light sleep as sleep outcomes. Analysis
uses time filter as per Roenneberg et al. (2012).

In Bed Total Sleep Time Deep Sleep REM Sleep Light Sleep

PolicyDay, β (in target zone) 1.061 1.063 1.041 0.845∗∗ 1.197∗∗∗
(0.037) (0.041) (0.081) (0.051) (0.061)

PolicyDay x Distance 0-1km 1.075∗ 1.080∗ 1.047 0.844∗∗ 1.237∗∗∗
(0.032) (0.037) (0.075) (0.048) (0.059)

PolicyDay x Distance >1km 1.075∗ 1.075∗ 1.059 0.830∗∗∗ 1.226∗∗∗
(0.032) (0.037) (0.076) (0.047) (0.059)

Mean Temperature 0.999∗∗∗ 0.998∗∗∗ 0.997∗∗∗ 0.998∗∗∗ 0.999∗∗∗
(0.000075) (0.000082) (0.00012) (0.00014) (0.000097)

Mean Humidity 1.000 1.000 1.001∗∗∗ 1.000∗ 1.000∗∗∗
(0.000030) (0.000032) (0.000050) (0.000054) (0.000039)

Mean Precipitation 1.003∗ 0.999 0.998 1.002 1.000
(0.0015) (0.0016) (0.0024) (0.0028) (0.0019)

Day of Week FE Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes Yes

User FE Yes Yes Yes Yes Yes

pseudo R2 0.177 0.203 0.290 0.147 0.253
N 435,229 435,229 434,096 426,588 435,203
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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in a sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset
latency, sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.
Analysis uses time filter as per Roenneberg et al. (2012).

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 1.020 1.150 0.931 0.959
(0.069) (0.25) (0.100) (0.076)

PolicyDay x Distance 0-1km 1.013 1.244 0.944 0.976
(0.026) (0.25) (0.091) (0.029)

PolicyDay x Distance >1km 1.211 0.937
(0.24) (0.091)

Mean Temperature 0.997∗∗∗ 1.001 1.001∗∗∗ 1.006∗∗∗
(0.00049) (0.00050) (0.00032) (0.00058)

Mean Humidity 1.000 1.000 0.998∗∗∗ 0.998∗∗∗
(0.00019) (0.00019) (0.00013) (0.00022)

Mean Precipitation 1.006 1.008 1.037∗∗∗ 1.056∗∗∗
(0.0096) (0.0097) (0.0063) (0.012)

Day of Week FE Yes Yes Yes Yes

Month FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes

User FE Yes Yes Yes Yes

pseudo R2 0.235 0.229 0.332 0.272
N 429,565 435,206 434,961 420,706
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes. Analysis uses time filter
as per Roenneberg et al. (2012).

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.0103 -0.00365
(0.017) (0.0067)

PolicyDay x Distance 0-1km 0.0116 -0.00336
(0.016) (0.0032)

PolicyDay x Distance >1km 0.00852
(0.016)

Mean Temperature -0.000612∗∗∗ 0.000628∗∗∗
(0.000047) (0.000053)

Mean Humidity 0.0000358∗ -0.000175∗∗∗
(0.000018) (0.000020)

Mean Precipitation -0.00358∗∗∗ 0.00475∗∗∗
(0.00093) (0.0010)

Constant 0.848∗∗∗ 0.0838∗∗∗
(0.0015) (0.0017)

Annual Car Free Day Yes Yes

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.327 0.271
N 435,229 420,714
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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in a sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset
latency, sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.
Analysis uses time filter as per Roenneberg et al. (2012).

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.966 1.150 0.931 0.937
(0.072) (0.25) (0.100) (0.081)

PolicyDay x Distance 0-1km 0.959 1.244 0.944 0.953
(0.040) (0.25) (0.091) (0.044)

PolicyDay x Distance 1-2km 0.917 1.219 0.921 0.964
(0.044) (0.25) (0.091) (0.053)

PolicyDay x Distance >2km 1.199 0.967
(0.24) (0.095)

Mean Temperature 0.997∗∗∗ 1.001 1.001∗∗∗ 1.006∗∗∗
(0.00049) (0.00050) (0.00032) (0.00058)

Mean Humidity 1.000 1.000 0.998∗∗∗ 0.998∗∗∗
(0.00019) (0.00019) (0.00013) (0.00022)

Mean Precipitation 1.006 1.008 1.037∗∗∗ 1.056∗∗∗
(0.0096) (0.0097) (0.0063) (0.012)

Day of Week FE Yes Yes Yes Yes
Yes

Month FE Yes Yes Yes Yes
Yes

Year FE Yes Yes Yes Yes
Yes

Holidays FE Yes Yes Yes Yes
Yes

User FE Yes Yes Yes Yes
Yes

pseudo R2 0.235 0.229 0.332 0.272
N 429,565 435,206 434,961 420,706
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes. Analysis uses time filter
as per Roenneberg et al. (2012).

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.0103 -0.00564
(0.017) (0.0076)

PolicyDay x Distance 0-1km 0.0116 -0.00534
(0.016) (0.0049)

PolicyDay x Distance 1-2km 0.00881 -0.00318
(0.016) (0.0060)

PolicyDay x Distance >2km 0.00803
(0.016)

Mean Temperature -0.000612∗∗∗ 0.000628∗∗∗
(0.000047) (0.000053)

Mean Humidity 0.0000358∗ -0.000175∗∗∗
(0.000018) (0.000020)

Mean Precipitation -0.00358∗∗∗ 0.00475∗∗∗
(0.00093) (0.0010)

Constant 0.848∗∗∗ 0.0838∗∗∗
(0.0015) (0.0017)

Annual Car Free Day Yes Yes

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.327 0.271
N 435,229 420,714
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 21: Incidence Rate Ratios (IRR) of the effect of Paris Respire-induced changes in air quality
on the number of minutes, in a sleep phase, per user. Regression results correspond to Eq. 3 with
duration in bed, total sleep, deep sleep, REM sleep, and light sleep as sleep outcomes. Analysis
uses time filter as per Roenneberg et al. (2012).

In Bed Total Sleep Time Deep Sleep REM Sleep Light Sleep

PolicyDay, β (in target zone) 1.061 1.063 1.041 0.845∗∗ 1.197∗∗∗
(0.037) (0.041) (0.081) (0.051) (0.061)

PolicyDay x Distance 0-2km 1.076∗ 1.079∗ 1.049 0.842∗∗ 1.235∗∗∗
(0.032) (0.037) (0.075) (0.047) (0.059)

PolicyDay x Distance >2km 1.073∗ 1.072∗ 1.048 0.826∗∗∗ 1.235∗∗∗
(0.032) (0.038) (0.076) (0.047) (0.060)

Mean Temperature 0.999∗∗∗ 0.998∗∗∗ 0.997∗∗∗ 0.998∗∗∗ 0.999∗∗∗
(0.000075) (0.000082) (0.00012) (0.00014) (0.000097)

Mean Humidity 1.000 1.000 1.001∗∗∗ 1.000∗ 1.000∗∗∗
(0.000030) (0.000032) (0.000050) (0.000054) (0.000039)

Mean Precipitation 1.003∗ 0.999 0.998 1.002 1.000
(0.0015) (0.0016) (0.0024) (0.0028) (0.0019)

Day of Week FE Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes Yes

User FE Yes Yes Yes Yes Yes

pseudo R2 0.177 0.203 0.290 0.147 0.253
N 435,229 435,229 434,096 426,588 435,203
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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in a sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset
latency, sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.
Analysis uses time filter as per Roenneberg et al. (2012).

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.966 1.150 0.931 0.937
(0.072) (0.25) (0.100) (0.081)

PolicyDay x Distance 0-2km 0.954 1.240 0.941 0.955
(0.040) (0.25) (0.090) (0.044)

PolicyDay x Distance >2km 1.198 0.966
(0.24) (0.095)

Mean Temperature 0.997∗∗∗ 1.001 1.001∗∗∗ 1.006∗∗∗
(0.00049) (0.00050) (0.00032) (0.00058)

Mean Humidity 1.000 1.000 0.998∗∗∗ 0.998∗∗∗
(0.00019) (0.00019) (0.00013) (0.00022)

Mean Precipitation 1.006 1.008 1.037∗∗∗ 1.056∗∗∗
(0.0096) (0.0097) (0.0063) (0.012)

Day of Week FE Yes Yes Yes Yes
Yes

Month FE Yes Yes Yes Yes
Yes

Year FE Yes Yes Yes Yes
Yes

Holidays FE Yes Yes Yes Yes
Yes

User FE Yes Yes Yes Yes
Yes

pseudo R2 0.235 0.229 0.332 0.272
N 429,565 435,206 434,961 420,706
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes. Analysis uses time filter
as per Roenneberg et al. (2012).

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.0103 -0.00564
(0.017) (0.0076)

PolicyDay x Distance 0-2km 0.0112 -0.00505
(0.016) (0.0049)

PolicyDay x Distance >2km 0.00802
(0.016)

Mean Temperature -0.000612∗∗∗ 0.000628∗∗∗
(0.000047) (0.000053)

Mean Humidity 0.0000358∗ -0.000175∗∗∗
(0.000018) (0.000020)

Mean Precipitation -0.00359∗∗∗ 0.00475∗∗∗
(0.00093) (0.0010)

Constant 0.848∗∗∗ 0.0838∗∗∗
(0.0015) (0.0017)

Annual Car Free Day Yes Yes

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.327 0.271
N 435,229 420,714
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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F.2 Using Walch et al. (2016)

Table 24: Incidence Rate Ratios (IRR) of the effect of Paris Respire-induced changes in air quality
on the number of minutes, in a sleep phase, per user. Regression results correspond to Eq. 3 with
duration in bed, total sleep, deep sleep, REM sleep, and light sleep as sleep outcomes. Analysis
uses time filter as per Walch et al. (2016).

In Bed Total Sleep Time Deep Sleep REM Sleep Light Sleep

PolicyDay, β (in target zone) 1.017∗∗∗ 1.021∗∗∗ 1.020∗ 1.033∗∗∗ 1.022∗∗∗
(0.0046) (0.0050) (0.0078) (0.0087) (0.0059)

PolicyDay x Distance 0-1km 1.023∗∗∗ 1.024∗∗∗ 1.024∗∗∗ 1.032∗∗∗ 1.028∗∗∗
(0.0033) (0.0038) (0.0062) (0.0070) (0.0047)

PolicyDay x Distance >1km 1.024∗∗∗ 1.025∗∗∗ 1.026∗∗∗ 1.033∗∗∗ 1.026∗∗∗
(0.0039) (0.0044) (0.0067) (0.0076) (0.0053)

Annual Car Free Day 0.994 0.994 0.983 0.999 0.999
(0.0048) (0.0054) (0.0089) (0.0094) (0.0073)

Mean Temperature 0.999∗∗∗ 0.998∗∗∗ 0.997∗∗∗ 0.998∗∗∗ 0.999∗∗∗
(0.000057) (0.000064) (0.00011) (0.00012) (0.000079)

Mean Humidity 1.000∗ 1.000∗ 1.001∗∗∗ 1.000∗ 1.000∗∗∗
(0.000022) (0.000024) (0.000042) (0.000045) (0.000031)

Mean Precipitation 1.000 0.999 1.000 1.002 0.999
(0.0011) (0.0012) (0.0021) (0.0022) (0.0015)

Day of Week FE Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes Yes

User FE Yes Yes Yes Yes Yes

pseudo R2 0.156 0.187 0.297 0.137 0.253
N 548,011 548,011 546,583 537,118 547,997
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 25: Incidence Rate Ratios (IRR) of the effect of Paris Respire on the number of minutes,
in a sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset
latency, sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.
Analysis uses time filter as per Walch et al. (2016).

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.971 0.973 1.010 1.056
(0.028) (0.028) (0.019) (0.035)

PolicyDay x Distance 0-1km 0.982 1.007 1.038∗ 1.073∗
(0.023) (0.025) (0.016) (0.030)

PolicyDay x Distance >1km 0.972 1.005 1.034 1.078∗
(0.025) (0.027) (0.018) (0.034)

Annual Car Free Day 0.980 0.958 0.996 1.036
(0.035) (0.030) (0.022) (0.042)

Mean Temperature 0.998∗∗∗ 1.001 1.001∗∗∗ 1.006∗∗∗
(0.00044) (0.00044) (0.00028) (0.00052)

Mean Humidity 1.000 1.000 0.999∗∗∗ 0.998∗∗∗
(0.00017) (0.00016) (0.00011) (0.00019)

Mean Precipitation 1.010 1.008 1.024∗∗∗ 1.027∗∗
(0.0084) (0.0081) (0.0052) (0.0095)

Day of Week FE Yes Yes Yes Yes
Yes

Month FE Yes Yes Yes Yes
Yes

Year FE Yes Yes Yes Yes
Yes

Holidays FE Yes Yes Yes Yes
Yes

User FE Yes Yes Yes Yes
Yes

pseudo R2 0.238 0.229 0.315 0.249
N 541,415 547,990 547,728 531,025
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 26: The effect of Paris Respire on sleep quality measurements per user. Regression results
correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes. Analysis uses time filter
as per Walch et al. (2016).

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.00224 0.00202
(0.0026) (0.0027)

PolicyDay x Distance 0-1km 0.000263 0.00339
(0.0021) (0.0024)

PolicyDay x Distance >1km 0.000798 0.00348
(0.0023) (0.0026)

Annual Car Free Day -0.000673 0.00345
(0.0032) (0.0032)

Mean Temperature -0.000501∗∗∗ 0.000519∗∗∗
(0.000038) (0.000040)

Mean Humidity 0.00000844 -0.000117∗∗∗
(0.000014) (0.000015)

Mean Precipitation -0.00126 0.00192∗∗
(0.00072) (0.00073)

Constant 0.861∗∗∗ 0.0700∗∗∗
(0.0012) (0.0013)

Annual Car Free Day Yes Yes

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.315 0.256
N 548,011 531,038
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 27: Incidence Rate Ratios (IRR) of the effect of Paris Respire on the number of minutes,
in a sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset
latency, sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.
Analysis uses time filter as per Walch et al. (2016).

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.971 0.973 1.010 1.056
(0.028) (0.028) (0.019) (0.035)

PolicyDay x Distance 0-1km 0.982 1.007 1.038∗ 1.073∗
(0.023) (0.025) (0.016) (0.030)

PolicyDay x Distance 1-2km 0.962 1.007 1.030 1.073∗
(0.026) (0.028) (0.019) (0.036)

PolicyDay x Distance >2km 0.990 1.001 1.041 1.087∗
(0.030) (0.033) (0.022) (0.038)

Annual Car Free Day 0.979 0.958 0.996 1.036
(0.035) (0.030) (0.022) (0.042)

Mean Temperature 0.998∗∗∗ 1.001 1.001∗∗∗ 1.006∗∗∗
(0.00044) (0.00044) (0.00028) (0.00052)

Mean Humidity 1.000 1.000 0.999∗∗∗ 0.998∗∗∗
(0.00017) (0.00016) (0.00011) (0.00019)

Mean Precipitation 1.010 1.008 1.024∗∗∗ 1.027∗∗
(0.0084) (0.0081) (0.0052) (0.0095)

Day of Week FE Yes Yes Yes Yes
Yes

Month FE Yes Yes Yes Yes
Yes

Year FE Yes Yes Yes Yes
Yes

Holidays FE Yes Yes Yes Yes
Yes

User FE Yes Yes Yes Yes
Yes

pseudo R2 0.238 0.229 0.315 0.249
N 541,415 547,990 547,728 531,025
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 28: The effect of Paris Respire on sleep quality measurements per user. Regression results
correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes. Analysis uses time filter
as per Walch et al. (2016).

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.00224 0.00202
(0.0026) (0.0027)

PolicyDay x Distance 0-1km 0.000264 0.00339
(0.0021) (0.0024)

PolicyDay x Distance 1-2km 0.000749 0.00348
(0.0024) (0.0028)

PolicyDay x Distance >2km 0.000875 0.00347
(0.0027) (0.0028)

Annual Car Free Day -0.000674 0.00345
(0.0032) (0.0032)

Mean Temperature -0.000501∗∗∗ 0.000519∗∗∗
(0.000038) (0.000040)

Mean Humidity 0.00000844 -0.000117∗∗∗
(0.000014) (0.000015)

Mean Precipitation -0.00126 0.00192∗∗
(0.00072) (0.00073)

Constant 0.861∗∗∗ 0.0700∗∗∗
(0.0012) (0.0013)

Annual Car Free Day Yes Yes

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.315 0.256
N 548,011 531,038
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 29: Incidence Rate Ratios (IRR) of the effect of Paris Respire-induced changes in air quality
on the number of minutes, in a sleep phase, per user. Regression results correspond to Eq. 3 with
duration in bed, total sleep, deep sleep, REM sleep, and light sleep as sleep outcomes. Analysis
uses time filter as per Walch et al. (2016).

In Bed Total Sleep Time Deep Sleep REM Sleep Light Sleep

PolicyDay, β (in target zone) 1.017∗∗∗ 1.021∗∗∗ 1.020∗ 1.033∗∗∗ 1.022∗∗∗
(0.0046) (0.0050) (0.0078) (0.0087) (0.0059)

PolicyDay x Distance 0-2km 1.023∗∗∗ 1.025∗∗∗ 1.025∗∗∗ 1.032∗∗∗ 1.027∗∗∗
(0.0033) (0.0038) (0.0061) (0.0069) (0.0047)

PolicyDay x Distance >2km 1.022∗∗∗ 1.024∗∗∗ 1.022∗∗ 1.031∗∗∗ 1.028∗∗∗
(0.0050) (0.0057) (0.0083) (0.0092) (0.0071)

Annual Car Free Day 0.994 0.994 0.983 0.999 0.999
(0.0048) (0.0054) (0.0089) (0.0094) (0.0073)

Mean Temperature 0.999∗∗∗ 0.998∗∗∗ 0.997∗∗∗ 0.998∗∗∗ 0.999∗∗∗
(0.000057) (0.000064) (0.00011) (0.00012) (0.000079)

Mean Humidity 1.000∗ 1.000∗ 1.001∗∗∗ 1.000∗ 1.000∗∗∗
(0.000022) (0.000024) (0.000042) (0.000045) (0.000031)

Mean Precipitation 1.000 0.999 1.000 1.002 0.999
(0.0011) (0.0012) (0.0021) (0.0022) (0.0015)

Day of Week FE Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Holidays FE Yes Yes Yes Yes Yes

User FE Yes Yes Yes Yes Yes

pseudo R2 0.156 0.187 0.297 0.137 0.253
N 548,011 548,011 546,583 537,118 547,997
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 30: Incidence Rate Ratios (IRR) of the effect of Paris Respire on the number of minutes,
in a sleep phase, per user. Regression results correspond to Eq. 3 with durations of sleep onset
latency, sleep offset latency, total wake time, and wake after sleep onset (WASO) as sleep outcomes.
Analysis uses time filter as per Walch et al. (2016).

Sleep Offset Sleep Onset Total Wake Time WASO

PolicyDay, β (in target zone) 0.971 0.973 1.010 1.056
(0.028) (0.028) (0.019) (0.035)

PolicyDay x Distance 0-2km 0.980 1.007 1.037∗ 1.073∗
(0.023) (0.025) (0.016) (0.030)

PolicyDay x Distance >2km 0.989 1.001 1.041 1.087∗
(0.030) (0.033) (0.022) (0.038)

Annual Car Free Day 0.980 0.958 0.996 1.036
(0.035) (0.030) (0.022) (0.042)

Mean Temperature 0.998∗∗∗ 1.001 1.001∗∗∗ 1.006∗∗∗
(0.00044) (0.00044) (0.00028) (0.00052)

Mean Humidity 1.000 1.000 0.999∗∗∗ 0.998∗∗∗
(0.00017) (0.00016) (0.00011) (0.00019)

Mean Precipitation 1.010 1.008 1.024∗∗∗ 1.027∗∗
(0.0084) (0.0081) (0.0052) (0.0095)

Day of Week FE Yes Yes Yes Yes
Yes

Month FE Yes Yes Yes Yes
Yes

Year FE Yes Yes Yes Yes
Yes

Holidays FE Yes Yes Yes Yes
Yes

User FE Yes Yes Yes Yes
Yes

pseudo R2 0.238 0.229 0.315 0.249
N 541,415 547,990 547,728 531,025
Robust S.E. clustered by User x Day of Week in parentheses
Exponentiated coefficients; A value of 1 represents no percentage change in vehicles.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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rTable 31: The effect of Paris Respire on sleep quality measurements per user. Regression results
correspond to Eq. 4 with sleep efficiency and night efficiency as outcomes. Analysis uses time filter
as per Walch et al. (2016).

Sleep Efficiency Night Efficiency

PolicyDay, β (in target zone) 0.00224 0.00202
(0.0026) (0.0027)

PolicyDay x Distance 0-2km 0.000330 0.00340
(0.0021) (0.0024)

PolicyDay x Distance >2km 0.000878 0.00347
(0.0027) (0.0028)

Annual Car Free Day -0.000679 0.00345
(0.0032) (0.0032)

Mean Temperature -0.000501∗∗∗ 0.000519∗∗∗
(0.000038) (0.000040)

Mean Humidity 0.00000846 -0.000117∗∗∗
(0.000014) (0.000015)

Mean Precipitation -0.00126 0.00192∗∗
(0.00072) (0.00073)

Constant 0.861∗∗∗ 0.0700∗∗∗
(0.0012) (0.0013)

Annual Car Free Day Yes Yes

Day of Week FE Yes Yes

Month FE Yes Yes

Year FE Yes Yes

Holidays FE Yes Yes

User FE Yes Yes

R2 0.315 0.256
N 548,011 531,038
Robust S.E. clustered by User x Day of Week in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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