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Abstract: We propose a novel strategy-proof dynamic auction for efficiently
allocating heterogeneous indivisible commodities. The auction applies to all
unimodular demand types of Baldwin and Klemperer’s necessary and sufficient
condition for the existence of competitive equilibrium which accommodate a va-
riety of complements, substitutes, gross substitutes and complements, and any
other kinds. Although bidders are not assumed to be price-takers so they can
act strategically, this auction induces bidders to bid truthfully, yielding efficient
outcomes. Sincere bidding is shown to be an ex post perfect Nash equilibrium
of the auction. The trading rules are simple, detail-free, privacy-preserving,

error-tolerant, and independent of any probability distribution assumption.
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1 Introduction

This paper offers a general, efficient, and strategy-proof dynamic design for auctioning
a wide variety of heterogeneous indivisible commodities/items to many bidders. Every
bidder has a private valuation on every of his interested bundles of items, may demand
any number of items and act strategically rather than truthfully. A consequence of our
design resolves an important issue concerning complements raised by Milgrom (2017, p.45),
who says: “Markets for complements can be much harder than markets for substitutes

and can require greater planning and coordination.”!
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In dynamic auction design, prices play an instrumental rule in guiding the market to-
ward a competitive equilibrium. In this paper, we use the standard notion of competitive
equilibrium. The pricing rule is anonymous and linear for all agents. This rule is common,
easy, and practical. Our dynamic auction design applies to all unimodular demand types
of Baldwin and Klemperer (2019) which are a necessary and sufficient condition for the
existence of competitive equilibrium regardless of whether the commodities are comple-
ments, (gross) substitutes (GS), gross substitutes and complements (GSC), or any other
kinds. Unimodular demand types are rich, unify existing sufficient conditions? and can
also identify previously-unknown environments in which a competitive equilibrium still
exists. Baldwin and Klemperer (2014, 2019) have also shown that there are far more
classes of complements than of substitutes for equilibrium existence.

While Baldwin and Klemperer (2019) have established this important equilibrium ex-
istence theorem via a nonconstructive method in an equilibrium model with price-taking
agents and complete information, this article addresses a related, but distinct, fundamental
problem of how competitive equilibrium prices can be formed and found and efficient allo-
cations can be identified in an incomplete information environment with strategic bidders.
We propose a dynamic auction and show that sincere bidding is an ex post perfect Nash
equilibrium of the auction game of incomplete information and the auction yields a com-
petitive outcome. Our auction is the first efficient and strategy-proof dynamic mechanism
under the necessary and sufficient condition of Baldwin and Klemperer (2019).

Besides, we shall also highlight two other major contributions of this paper. First,
a salient feature of our auction design is a new concept of “a search set,” which makes
our approach universal, not ad hoc. Our auction converges globally for every unimodular
demand type from any starting point to a competitive equilibrium. Our approach is novel,
combinatorial, general, employing only convexity and unimodularity. It goes beyond the
conventional ones which use the familiar property of submodularity; see e.g., Gul and
Stacchetti (2000) and Ausubel (2006). Submodularity indeed holds for (gross) substitutes
but, in general, does not hold for other demand types. Our auction provides also an inno-

vative algorithm for solving a class of general constrained discrete optimization problems

2Earlier existence results include Koopmans and Beckmann (1957), Shapley and Shubik (1971), Kelso
and Crawford (1982), Gul and Stacchetti (1999), Danilov et al. (2001), Sun and Yang (2006), Crawford
(2008), Milgrom and Strulovici (2009), Hatfield et al. (2013), and Shioura and Yang (2015).



in which functions are not given explicitly. This is in marked contrast to the literature
in which functions are given explicitly and algorithms work directly on the functions; see
e.g., Murota (2003), Fujishige (2005), Lee and Leyffer (2012). Furthermore, we prove
that the set of competitive equilibrium price vectors in our market exhibits a striking ge-
ometric structure being an integral polytope, sharpening and extending the lattice results
obtained by Shapley and Shubik (1971), Gul and Stacchetti (1999) and Ausubel (2006)
for substitutes. A lattice is not necessarily a polytope.

Second, it is well-recognized that strategy-proof dynamic mechanisms have important
advantages over strategy-proof direct/static mechanisms in their capacity of alleviating
bidders’ concern about privacy and reducing computational complexity, payoff uncer-
tainty and information cost; see e.g., Rothkopf et al. (1990), McMillan (1994), Ausubel
(2004, 2006), Ausubel and Milgrom (2005), Perry and Reny (2005), Bergemann and Mor-
ris (2007), Rothkopf (2007), and Milgrom (2007, 2017). Besides, possessing such desirable
properties, the current auction can tolerate various dishonest behaviors and mistakes made
by bidders and allow them to learn, adjust, and correct. Unlike the conventional approach
of a huge penalty for violation, we adopt a lenient policy and show that no bidder will
end up with a negative payoff as long as he can differentiate a positive number from a
negative one, no matter how his competitors bid. The current auction is independent of
any probability distribution assumption, detail-free, and robust against any regret and
needs only a minimal common knowledge assumption that the unimodular demand type
of commodities is known. This is desirable and important; see Wilson (1987).

The rest of this article goes as follows. The auction model is introduced in Section 2.
The structure of the set of competitive equilibria and other properties of the model are
explored in Section 3. The basic dynamic auction design and convergence are discussed
in Section 4. The strategy-proof dynamic auction built upon the basic dynamic auction

and its strategic properties are examined in Section 5.

1.1 A Brief Literature Review

Most dynamic auctions were designed for (gross) substitutes—the benchmark condition in-
troduced by Kelso and Crawford (1982). These include Crawford and Knoer (1981), Kelso
and Crawford (1982), Demange et al. (1986), Gul and Stacchetti (2000), Milgrom (2000),
Ausubel (2004, 2006), Hatfield and Milgrom (2005), Milgrom and Strulovici (2009), and



Murota et al. (2016), etc. Among these, sincere bidding is an ex post Nash equilibrium for
the assignment market (see e.g., Demange et al. 1986 and Andersson and Svensson 2016),
and an ex post perfect Nash equilibrium for those of Ausubel (2004, 2006). In contrast,
there are only very few results concerning complements; see Sun and Yang (2009) for a
dynamic auction for gross substitutes and complements and Candogan et al. (2015) for
an iterative auction for tree valuations exhibiting substitutes and complements. These
papers and the current paper all use anonymous and linear pricing rules. Sun and Yang
(2014) proposed a strategy-proof dynamic auction for multiple complements using anony-
mous and nonlinear pricing. Furthermore, discriminatory and nonlinear pricing rules are
applied to package auctions; see Ausubel and Milgrom (2002), Mishra and Parkes (2007),
and De Vries et al. (2007) for ascending auctions. These pricing rules are so general that
they can charge people differently for the same bundle of goods and offer solutions for
markets lacking competitive equilibrium. However, anonymous and linear pricing rules
have distinct advantages over these rules so are more commonly used in both theory and
practice.

In the traditional analyses, it has been essential to assume that agents are price-takers
or have no market power at all (see Debreu and Scarf 1963, Aumann 1964, and Arrow
and Hahn 1971). Unfortunately, this assumption can hardly be satisfied in any real life
auction, as the number of bidders is usually small and bidders do possess considerable
market power so it is inconceivable that they would not bid strategically if it were in
their interests to do so. See Kojima and Pathak (2009) for a discussion on large markets.
Our paper aims to provide an efficient and strategy-proof dynamic auction mechanism for
general markets where no one has all information but every bidder possesses some private
information and may act strategically. See Hayek (1945) and Hurwicz (1971) on such

fundamental issues.

2 The Model

An auctioneer or a seller wants to sell a set N = {1,2,--- ,n} of n indivisible items to a
group B of m potential bidders. Some of the items can be heterogeneous and the other can
be identical. Identical items will be labelled differently. This way of treating indivisible

items in a competitive equilibrium model causes no loss of generality as identical units of



the same commodity can be treated as different items but will have the same equilibrium
price. Let RY denote the n-dimensional Euclidean space, where each coordinate is indexed
by a number from the set N. Let ZV stand for the set of all integer vectors in RYY. For
every i € N, let e(i) denote the ith unit vector in RY. A subset S of N represents a
bundle of items in S. For easy exposition, we regard a set S and the corresponding vector
> ics €(i) as the same bundle.

Every bidder (he) j € B has a utility function v/ : {0,1}" — ZU{—o0} specifying his
valuation v/ () (in units of money, say, in dollars) on every bundle x, where {0, l}N denotes
the set of all bundles of items. The seller (she) denoted by 0 has a reserve price function
u® : {0,1}V — ZU{—oc}. Let By = BU{0} stand for the set of all market participants (all
bidders and the seller). In general, when we talk about a generic agent who can be a bidder
or the seller, we treat the agent as female. Let dom(u’) = {z € {0,1}" | v/(z) > —oc0}
denote the effective domain of u? for every agent j € By. A bundle x is unacceptable to
an agent j € By if and only if v/ (x) = —o0, i.e., z ¢ dom(u/).

All agents have quasi-linear utilities in money. That is, every agent j’s utility over any
bundle z and any amount ¢ of money can be written as U (z,c) = u/(x) + ¢ for j € By.
Every agent has a limited but enough amount of budget so that she does not face any
budget constraint (No Budget Constraint Condition). Note that when a commodity is
sold with a negative price, this means that the commodity can be bad and the seller will
pay the price. So our model can accommodate indivisible goods as well as bads. We use
M = (w,j € By, N) or simply M to represent the market. A submarket is what is left
in the market M by deleting a number of bidders and a number of items.

An allocation of items in N is a redistribution X = (27,j € Bp) of items among
all market participants in By such that } .. p 2l =Y. cne(i) and 27 € {0,1}Y for all
j € By. At allocation X, agent j € By receives bundle z7. An allocation X = (27,5 € By)
is feasible if 27 € dom(u’) for every agent j € B U {0}. We assume that the market has
at least one feasible allocation (Feasibility Condition). This is a general and minimal
assumption, meaning that every item can be acceptable to some agents in some ways

and every agent has at least one acceptable bundle.®> An allocation X = (27,5 € By) is

3The following market trivially satisfies this assumption. The set dom(u’) of every bidder j € B
contains at least one nonzero vector and also the dummy bundle 0 with u?(0) = 0. So every bidder has
the option of buying nothing and is interested in buying some items. The set dom(u") of the seller equals

{0,1}" with «°(0) = 0. This means that the seller will not sell but retain a bundle if the price of the



efficient if 3~ cp ul (27) > > icBo u!(y?) for every allocation Y = (y7,j € By). Given
an efficient allocation X, let R(N) = >_,cp, u? (27). We call R(N) the market value of the
items which is the same for all efficient allocations. Clearly, an efficient allocation must
be feasible.

An n-vector p = (p1,--+ ,pn) € RY specifies a price p; for every item i € N and is
the same for all bidders. This is an anonymous and linear pricing rule, which is easy and
practical and has long and widely being used in theory and practice. Every bidder j € B

maximizes his profit and his demand set D7 (p) is given by

Di(p) = argmax,cqoyv{w(z) —p- =}, (1)

where p -z = ),y pizi. At prices p € RY, the seller chooses bundles to maximize her

revenues and her demand set D°(p) is given by

Dop) = arg maxye (o 1} {u’(z) —p -2+ Y cnpi}
= argmaXgefo1}y {u’(z) —p-x}.
The set DY(p) contains those bundles that the seller wishes to keep in hand and give her
the highest revenues. Although the seller has a different objective from the bidders, her
revenue-maximizing behavior is similar to a bidder’s profit-maximizing behavior. Observe
that if z € D°(p) at prices p, the seller will retain the bundle x and sell all other items by

receiving the payment of p- (3_,cye(i) —x) =D ,cypi — D T

Definition 1 (Competitive or Walrasian Equilibrium) A competitive or Walrasian equi-
librium (p, X) consists of a price vector p € ]Rf and an allocation X such that 2/ € D7 (p)

for every j € By.

If (p,X) is a competitive equilibrium, we call p an equilibrium price vector and X an
equilibrium allocation. We say that X is supported by p. It is well-known from the first
welfare theorem that every equilibrium allocation is efficient.

Baldwin and Klemperer (2019) have recently proposed a powerful necessary and suffi-
cient condition for the existence of competitive equilibrium in an exchange economy with
indivisible commodities, which will be used in our auction. Their condition (i.e. (A2)
below) covers and generalizes many previous conditions including the widely-used gross

substitutes condition of Kelso and Crawford (1982).

bundle is below her reserve price, and she will keep any bundle of her own items if the bundle is not sold.



Let #A denote the cardinality of any given finite set A. The dimension of any given
set A ¢ RY is understood as the dimension of the affine span of A. With respect to any
given utility function u : S — R U {—oco} with a finite set S € Z" and fdom(u) > 1, let

the demand set at a price vector p € RY be given by
D, (p) = argmax{u(z) —p- x}.
€S

Note that the domain S of the function u is very general, not restricted to the set {0, 1}".
Following Baldwin and Klemperer (2019), we introduce the locus of indifference prices,

demand type and unimodular demand type. We say that the set
To={p € R | tDu(p) > 1}

is the locus of indifference prices (LIP) of the demand mapping D,,. This set 7, concerns
those price vectors p at which there are at least two optimal bundles for any agent who
has the utility function u. LIP contains the only prices at which demand can change in
response to a price change, and is the union of (n— 1)-dimensional polyhedral pieces called
facets(a facet of a polyhedron of dimension n is a face that has dimension n — 1). These
facets separate the unique demand regions, in each of which some bundle is the unique
demand; see Baldwin and Klemperer (2019, Prop. 2.4). The normal vector to a facet F' is
a vector which is perpendicular to F' at a point in its relative interior. A non-zero integer

vector is primitive if the greatest common divisor of its coordinates is one.

Definition 2 (Demand Type) A finite set D of primitive vectors in ZV is a demand type
of function w if v € D implies —v € D and every facet of the LIP 7, has its normal vector

in D.

By definition, a demand type may contain vectors which are not a normal vector of any
facet of LIP 7,.

A square matrix is unimodular if all its elements are integral and its determinant is
+1 or —1. A matrix M is totally unimodular if every minor of M is 0 or £1. A set of n
integer vectors in RY is a unimodular basis for RY if the n x n matrix which has the n

integer vectors as its columns is unimodular.

Definition 3 (Unimodular Demand Type) A demand type D is unimodular if every lin-

early independent subset of D can be extended to a unimodular basis for R .



For a unimodular demand type D, additional vectors required to form a unimodular basis
are possibly chosen from outside D. Note that unimodular demand types are derived from
utility functions and given as sets of integer vectors associated with unimodular matrices.
These demand types capture the essential and natural attributes of the commodities but do
not reveal the values of the consumers. For instance, consumers view tables as something

sharing the same physical property but they can each have different valuations on tables.

Proposition 1 FEvery unimodular demand type can be added with less than n new vectors

so that the enlarged set is still a unimodular demand type and contains at least one basis.

This new and basic property of unimodular demand types is used in our auction design
by naturally assuming that every given unimodular demand type spans the space RY. As

the concept of demand type is quite new, we give an example to illustrate it.

Example 1 There is a market where the seller wishes to sell two items a and b to three
bidders. Every agent knows her values privately. We consider two possibilities. Case 1:
Both items are substitutes. Agents’ valuations are given in Table 1. Case 2: Both items

are complements. Agents’ valuations are given in Table 2.

Table 1: The case of substitutes. Table 2: The case of complements.
Agents\Bundles ) a b ab Agents\Bundles ® a b ab
Bidder 1 0 3 4 5 Bidder 1 0 2 2 5
Bidder 2 0 5 2 6 Bidder 2 0 2 2 5
Bidder 3 0 3 3 4 Bidder 3 01 1 4
Seller 0 2 2 3 Seller 01 1 3

For this example, in the case of substitutes, all agents have the same unimodular demand
type D = {£(1,0),+(0,1),£(1,—1)}. The locus of indifference prices of bidder 1 is shown
in Figure 1. In the case of complements, all agents have the same unimodular demand
type D = {£(1,0),£(0,1),£(1,1)}. The locus of indifference prices of bidder 1 is shown
in Figure 2. In the two figures, (1,0) stands for item a, (0, 1) for item b and (1,1) for two
items ab, and the normal vector of every facet of the LIP 7,1 is the dashed line.

The following two assumptions are imposed on our auction model M:
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Figure 1: «'(0,0) =0, u!(1,0) = 3, u'(0,1) = 4, and u'(1,1) = 5. The five connected lines denote LIP.

(A1) Integer Private Values: Every agent j € By knows her own utility function u/ :

{0,1}¥ — Z U {—o0} privately.

(A2) Common Unimodular Demand Type: All agents j € By have the same unimodular

demand type D for their utility functions u/.

Assumption (A1) means that every agent treats her valuation as her private, personal
information. The integer-valued assumption is a standard and natural one, as people
valuate the bundles of goods in units of currency, say, in dollars, which cannot be closer to
the nearest penny. As every agent’s utility function is assumed to be private information,
this means that the agent possessing this information can make use of it in a way it is
in her best interest. However, it is typically assumed that the seller acts truthfully while
bidders may behave strategically (see e.g., Ausubel 2004, 2006 and Perry and Reny 2005),
because it is well-known from Myerson and Satterthwaite (1983) that even in a simple
bilateral trading model with one seller, one buyer and one item, it is impossible to achieve
efficiency, individual rationality and strategy-proofness for both the seller and the buyer;
see also Krishna (2002). Unlike many previous models, we allow the seller to have her
personal reserve price function «°. This makes the model more realistic and practical.

Assumption (A2) can be alternatively stated as the union of the demand types of all
agents j € By is a unimodular demand type. This assumption says that agents may have

quite different valuations on every bundle of items but they all have the same demand
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Figure 2: «!(0,0) =0, »'(1,0) = »'(0,1) = 2, and w!(1,1) = 5. The five connected lines denote LIP.

type, which captures the quintessence of the items.* It is a test condition imposed upon
every individual agent, which is neat and easy to check compared with the earlier necessary
and sufficient conditions introduced by Bikhchandani and Mamer (1997), Ma (1998), Sun
and Yang (2002), and Yang (2003) which are given as aggregated conditions on the entire
market. Unimodular demand types are numerous. Note that for the market described in
Footnote 3, Assumption (A2) and dom(u®) = {0,1}" imply that the unimodular demand
type D shared by all agents is totally unimodular as it contains all unit vectors e(i), i € N.

We now briefly discuss three typical and important classes of unimodular demand types
given by Baldwin and Klemperer (2019). Note that besides these three classes there are

numerous other classes of demand types which remain to be explored.

Definition 4 (Gross Substitutes) A demand type D is gross substitutes (GS) or simply
substitutes if every vector x € D has at most one 1 entry and at most one —1 entry and

no other nonzero entries.

This definition captures the gross substitutes or simply substitutes condition of Kelso and

“Baldwin and Klemperer (2019, Theorem 4.3) have shown in a nonconstructive way by tropical geom-
etry and convex analysis that Assumption (A2) is a necessary and sufficient condition for the existence
of competitive equilibrium without requiring integral valuations whose equilibrium prices can be any real
numbers so may not be integral. Tran and Yu (2019) proposed an alternative proof of Theorem 4.3 of
Baldwin and Klemperer through the linear programming approach and a sealed-bid product-mix auction.

Baldwin et al. (2020) examined a general model with income effects.

10



Crawford (1982) on the demand behavior. See Gul and Stacchetti (1999, 2000), Fujishige
and Yang (2003), Hatfield and Milgrom (2005), Ausubel (2006), Milgrom and Strulovici
(2009), Shioura and Tamura (2015), Murota et al. (2016) for various results on substitutes.

Definition 5 (Gross Substitutes and Complements) Assume that S; and Sy are disjoint
subsets of IV and their union equals N. A demand type D is gross substitutes and com-
plements (GSC) if every vector x € D has at most two nonzero entries of +1 or —1 and
no other nonzero entries so that if two nonzero entries of = have the same sign, then one
nonzero component must be indexed by an element in S; and the other must be indexed

by an element in Ss.

GSC says that items in either S; or So are substitutes but items across the two sets
are complementary. Observe when either S or S5 becomes empty, GSC coincides with GS
and thus generalizes GS. This condition corresponds to the one in Sun and Yang (2006,

2009) as a generalization of gross substitutes. See also Shioura and Yang (2015).

Definition 6 (Unimodular Complements) A demand type D is unimodular complements

if 2 € D implies either z € {0,1}" or 2 € {0, —1}"V and D is unimodular.

A basis change is called a unimodular transformation if we have y = Az for every z € R
and A is a unimodular matrix of order n. Baldwin and Klemperer (2019, Prop. 6.2; 2014,
Theorem 5.27) have shown that every unimodular demand type is a unimodular trans-
formation of some unimodular complements demand type. This means that unimodular
complements demand types are so rich that any other unimodular demand type can be
obtained from them. It is known that the gross substitutes condition is the most general
representation of substitutability for equilibrium; see Gul and Stacchetti (1999, Theo-
rem 2, p. 103). However, we cannot have a similar statement for complements, because
unimodular complements demand types are numerous and varied and there is no unique
maximal unimodular complements demand type.

In the literature, we have a far better understanding of substitutes than of comple-
ments. Levin (1997) introduced an optimal sealed-bid auction for two complementary
items, extending the auction of Myerson (1981) for a single item. Sun and Yang (2014)
proposed a dynamic auction for multiple complements that satisfy super-additivity. Their

model does not guarantee the existence of competitive equilibrium (with linear pricing) so

11



anonymous and nonlinear pricing has to be used. In this case the complements demand

type is not unimodular.

3 On the Structure of Competitive Equilibria

In this section we present several basic results which will play an important role in our
auction design and analysis.® These results are also interesting on their own right, intuitive,
and economically meaningful.

We first introduce several mathematical concepts. Other concepts can be found in the
appendix. A set S C RY is a polyhedron if S = {x € RN | Az < b} for some m x n matrix
A and an m-vector b. A bounded polyhedron is called a polytope. A polyhedron S C RY
having at least one vertex is integral if all its vertices are integral. The Minkowski sum of
any two sets S and T in R” is defined as S+ T = {x +y |z € S, y € T}. Given any
z,y € RY, define their meet z A y as the componentwise minimum of z and y and join
z V y as the componentwise maximum of z and y. A set S € RY is a lattice if z Ay € S
and xVy € S for any x,y € S. A polyhedron is called a polyhedron with a lattice structure
if it is also a lattice. It is known that a lattice is not necessarily a polyhedron. A function

f defined on a convex set S in RY is called a polyhedral convex function if it is given as
f(x):maX{Bj'x+Cj|j:1>"'7k} (ZL‘ES),

where B; is an n-vector and c¢; is a constant, j = 1,--- ,k for a given positive integer k.
Let us turn to our auction model. For every agent j € By, define her indirect utility

function V7 : RN — R by

Vip) = max {u(x) —p- o} (2)

and, for the market model, define the Lyapunov function £ : RY — R by
Lp)=> pi+ Y Vi (3)
iEN J€Bo
where V7 is the indirect utility function of agent j € By. This type of function is well-

known in the literature for economies with divisible goods (see e.g., Arrow and Hahn 1971

5Precisely, they are crucial to the analysis of the convergence and other properties of our dynamic

auctions in Sections 4 and 5. The description of the auctions, however, dose not depend on this section.

12



and Varian 1981) and has been explored by Ausubel (2006) and Sun and Yang (2009) for

auction markets with indivisible goods. We have the following two basic results.

Lemma 1 For any given function f : S — R with a nonempty finite set S C ZV, the
function g : RN — R defined by g(p) = maxzes{f(z) —p-x} for everyp € RN is a

decreasing polyhedral convex function.

Lemma 2 For the market model, the Lyapunov function L defined by (3) is a polyhedral

convez function bounded from below.

The above two lemmas are very general and do not depend on any particular assump-
tions such as Assumptions (A1) and (A2). Proposition 1 of Ausubel (2006) and Lemma 1
of Sun and Yang (2009) imply that p € R" is an equilibrium price vector if and only if it
is a minimizer of the Lyapunov function £ provided that the market has an equilibrium.

To study the collective behavior of all agents j € By, we consider the convolution u of

their utility functions u’ given by

u(z) = max{ Z w(y) |z = Z v’ where y/ € {0,1}"for every j € By} (4)
Jj€Bo J€Bo
for every x € {0,1,---,m-+1}". This function is closely related to the Lyapunov function

L. For all p e RY and all 27 € DJ(p) of agents j € By, define
g(x) = Z w (x7) where z = Z . (5)
J€Bo J€E€Bo

From all demand sets D’(p) we obtain the following demand set of Minkowski sum
DM*(p) = D°(p) + D' (p) + -+ D™ (p). (6)

When an agent’s demand type D with respect to utility function u is unimodular, we
say that the agent has a UDT D utility function u. The following two results demonstrate
several basic properties of the function g of (5) and the Minkowski sum DM* of (6),
playing an important role in our auction analysis. Related to our Lemma 4 is Corollary

3.14 of Baldwin and Klemperer (2019, p. 886).

Lemma 3 For any integer-valued UDT D wutility function v : S — ZU{—oco} with a finite
set S C ZV and tdom(u) > 1, if the convex hull of the demand set D, (p) for a price vector

p s full-dimensional, the price vector p must be integral and unique.

13



Lemma 4 Under Assumptions (Al) and (A2), the function g of (5) is well-defined,
coinciding with the convolution function u of (4) and being discrete concave with the
unimodular demand type D. In particular, the Minkowski sum DM?3(p) of (6) is the

demand set for valuation g = u and has the same unimodular demand type D.

We are ready to establish our first major result on the set of competitive equilibrium
price vectors, which exhibits an elegant geometric structure, extending and sharpening
the classic lattice results of Shapley and Shubik (1971) on assignment models, Gul and
Stacchetti (1999) and Ausubel (2006) on gross substitutes models. This theorem ensures
that our proposed auction will terminate with an integer equilibrium price vector no matter

which integer vector it starts with (see Theorem 3 in Section 4).

Theorem 1 Under Assumptions (A1) and (A2), the set of competitive equilibrium price

vectors forms a monempty integral polytope.

For gross substitutes, we can show that the set of competitive equilibrium price vectors

forms a nonempty integral polytope with a lattice structure.

4 Basic Dynamic Auction Design

In this section we consider the basic case that bidders bid straightforwardly as price-
takers. We propose a universally convergent dynamic (UCD) auction that applies to all
unimodular demand types. This section prepares us to deal with a more natural and
more realistic situation in Section 5 where bidders have market power, may therefore
act strategically rather than sincerely as price-takers, and may also occasionally make
mistakes. Based on the UCD auction we will introduce in Section 5 an efficient and
strategy-proof dynamic auction that allows bidders to learn, adjust, and correct.

In a dynamic auction, at each time ¢ € Z,, the auctioneer announces a price for every

item and then every bidder chooses a bid. We introduce the concept of sincere bidding.

Definition 7 (Sincere Bidding) Agent j € By bids sincerely with respect to her util-
ity function w’ if she always submits a bid B’(t) equal to her demand set D7(p(t)) =

arg max, e o 13~ {u/ (z) — p(t) - ¢} at every time t € Z; and any price vector p(t) € RY.

Roughly speaking, our universally convergent dynamic auction works as follows: At

each time t € Z4, the auctioneer announces the current prices p(t) € Z" and every bidder
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j responds by reporting his demand D7(p(t)). Then she uses every bidder’s reported
demand D7 (p(t)) to search for a price adjustment & in a neighborhood of prices p(t) in
order to update the current prices. To do so, she tries to reduce the value of the Lyapunov
function L(p(t) + ¢) as much as possible, until a minimizer of the Lyapunov function, i.e.,
a competitive equilibrium price vector, is found.

We now introduce the concept of a search set which is a key building block of our
auction design and gives an appropriate neighborhood of the current prices for price ad-
justment. The search set is defined with respect to any demand type D as given in

Assumption (A2).

Definition 8 (Search Set) For any given demand type D, its search set denoted by SD
is the collection of the zero vector and all nonzero primitive integer vectors ¢ € Z~ such

that we have ¢ - d; = 0 for some n — 1 linearly independent vectors dy,--- ,d,—1 € D.

One may view the search set as a family of the zero vector and all nonzero primitive integer
vectors § € ZV such that ¢ is a normal vector of a facet of a full-dimensional convex hull of
a demand set at some price vector p. The search set is a spanning set of R”, can be easily
obtained from any given demand type and varies from one demand type to another. It
applies universally to all kinds of commodities regardless of whether they are substitutes
or complements or anything else. The search set SD will be used as a litmus test of
optimality and for local searches. More precisely, it will be shown that p(t) € ZV is a
minimizer of the Lyapunov function £ if and only if L(p(t)) < L(p(t) + ) for all 6 € SD,
and that if p(t) € ZV is not a minimizer of £, we must have £(p(t)) > L(p(t) + ) for some
0 € 8D. These properties play a pivotal role in our basic dynamic auction design.

It will be helpful to use the simple case of complements in Example 1 to illustrate why
a typical multi-item ascending/English auction can be plagued by the exposure problem
and how our new auction overcomes the problem and succeeds in finding a competitive
equilibrium. Let us first see how a multi-item English auction would operate. The seller
initially announces low prices p(0) = (po(0), ps(0)) = (0,0). Clearly, every agent demands
the two items. As the bundle ab is overdemanded, the auction will raise the two prices
simultaneously, say each by one unit, an integer increment as a typical English auction
does. The price vector is updated to p(1) = (1,1). At p(1), ab is still overdemanded and
the prices are raised up to p(2) = (2,2). At p(2), ab is still overdemanded and the price
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is updated to p(3) = (3,3). At p(3) no bidder wants to demand any item and the auction
has stuck in a non-equilibrium state. This phenomenon is called the exposure problem;
see e.g., Milgrom (2000).

Now we will see how our basic auction resolves the exposure problem. As it will
be shown below, at any time ¢ € Z,, in order to reduce the value of the Lyapunov
function, the auctioneer/seller just needs to adjust the current prices p(¢) to the next
prices p(t + 1) = p(t) + 6(¢) by finding an optimal search direction §(¢) to the following
problem until the vector of zeros becomes an optimal solution:

max { min ))a:j -0 — Z di} (7)

6eSD J J
€ jEBom €Di(p(t N

This example has the demand type D = {%(1,0),£(0,1),£(1,1)} and its search set
SD = {(0,0),£(1,0),£(0,1),4(1,—1)}. Starting with p(0) = (pa(0),ps(0)) = (0,0),
the auctioneer updates prices p(t + 1) = p(t) + §(t) according to (7). At p(0), the bundle
ab is demanded by every agent. In this case, there are two optimal adjustments (1,0) and
(0,1) and we can choose either of the two. The auction process is shown in Table 3. The
auction stops at p(5) = (3,2) and finds a Walrasian equilibrium in which ab is allocated to
bidder 1 or 2 who pays 5 in return, and other bidders get nothing and pay nothing. Note
that the auction can also stop at (2, 3) if one chooses §(4) = (0,1) at p(4) = (2, 2).

Table 3: Illustration of the New Basic Auction.

time ¢ | prices p(t) | &(t) | D°(p(t)) | D'(p(t)) = D*(p(t)) | D*(p(t))
0 (0,0) (1,0) {ab} {ab} {ab}
1 (1,0) (0,1) {ab} {ab} {ab}
2 (1,1) (1,0) {ab} {ab} {ab}
3 (2,1) (0,1) | {ab,b,0} {ab} {ab}
4 (2,2) (1,0) {0} {ab} {ab, 0}
5 (3,2) (0,0) {0} {ab,b,0} {0}

The underlying principle of our auction is to find a minimizer of the nonlinear Lyapunov
function L, although we will not be able to use the function £ directly, because the

utility function of every bidder is private information and unavailable to the auctioneer.
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Moreover, because the function £ is nonlinear, we cannot reach any of its minimizers
in one step but have to do it iteratively by local search. Before discussing our dynamic

auction in detail, we first give the blueprint for our auction design:

e First, at current prices p(t) € ZV for time ¢t € Z,, the auctioneer searches locally
for a price adjustment 6(¢) in the convex hull Conv(SD) of the search set SD to
reduce the value of the Lyapunov function £ as much as possible from L(p(t)) to
L(p(t)+(t)). We will show that this local search can be done over the much easier

finite set SD instead of over the complicated, dense and infinite set Conv(SD).

e Second, we will show that based on every bidder j’s reported demand set D7 (p(t))
at prices p(t), the auctioneer’s solving the unobservable maximization problem of
L(p(t)) — L(p(t) + 6(t)) over the search set SD amounts to solving the much easier
observable problem (7). This process will be repeated until a minimizer of the

Lyapunov function, i.e., a competitive equilibrium price vector, is found.

Our auction can be seen as a substantial generalization of those of Demange et al. (1986),
Gul and Stacchetti (2000), and Ausubel (2006) from gross substitutes to all unimodular
demand types and is particularly close to Ausubel’s auction (2006, pp. 618-619). However,
we cannot generalize or use their arguments directly but have to explore quite different
and general techniques that apply to all unimodular demand types. The following lemma

will be used to show a crucial result, Proposition 2 given below.

Lemma 5 Let 8D be the search set of a unimodular demand type D and § € SD be a
primitive normal vector of an (n — 1)-dimensional space spanned by dy,--- ,d,—1 € D. If

di, - ,dn—1,dn € D form a basis, we have a|d - d,| =1 for some o > 1.

The next proposition concerning the Lyapunov function shows that the nonlinear op-
timization problem (8) over the convex hull of the finite search set is equivalent to the
nonlinear optimization problem (8) over the finite search set. This implies that when the
auctioneer tries to adjust prices, she just needs to focus on the few choices in the search

set SD rather than gropes around the entire convex hull of the search set SD.
Proposition 2 Under Assumptions (A1) and (A2), for any p(t) € ZV we have

5601311%)((573){“1’@)) = L{p(t) +0)} = max{L(p(t)) — L(p(t) + )} (8)
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From the above result and its proof (given in the Appendix), we immediately have
two corollaries. The first says that the optimal solutions of the constrained nonlinear
optimization problem (8) exist and correspond to the vertices of the set of all optimal
solutions. The second roughly says that if we can change prices slightly, the demand set

of every bidder will not change.

Corollary 1 Under Assumptions (Al) and (A2), the set of solutions to the left-side prob-

lem of (8) is a nonempty integral polytope.

Corollary 2 Under Assumptions (A1) and (A2), then for any j € By, any p € ZV, and
any § € 8D, we have D’ (p + £6) C DI(p) for all e € [0,1) and 27 € arg Minge pi(p) @ - 0
lies in DI (p + €6) for all ¢ € [0,1].

Corollary 2 substantially generalizes Proposition 2 of Ausubel (2006) on gross substitutes
to all unimodular demand types.

The following result gives a powerful local characterization of optimality or competitive
equilibrium price vectors, saying that the search set SD is a simple test set for verifying
whether a point is a minimizer of the Lyapunov function £ or not. Recall that because the
set of competitive equilibrium price vectors in our auction market is a nonempty integral
polytope by Theorem 1, an n-vector p* is a competitive equilibrium price vector if and

only if it is a minimizer of the Lyapunov function L.

Theorem 2 Under Assumptions (A1) and (A2), p* € ZV is a minimizer of the Lyapunov
function L in (3) if and only if L(p*) < L(p* + ) for all § € SD.

Finding an optimal solution of a nonlinear problem usually cannot be done in one
step but requires multiple successive local searches. Our next corollary says that if the
minimum of the nonlinear Lyapunov function £ has not been reached, one can further
reduce the function value along directions in the search set. Clearly, one can repeat such

local searches.

Corollary 3 Under Assumptions (A1) and (A2), if p € ZV is not a minimizer of the
Lyapunov function L in (3), it holds L(p + 0) < L(p) for some § € SD.

Now we can discuss the universally convergent dynamic auction in detail. Starting with

an arbitrarily given price vector p(t) € ZV | the auction tries to solve the following maxi-
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mization problem with the unobservable Lyapunov function £

e L) ~ £o(t) + ). o

It follows from Proposition 2 that the continuous maximization problem over the entire
convex hull of the search set SD can be considerably reduced to the following discrete

optimization problem over the finite set SD of integer vectors:

max {£(p(t)) — L(p(t) +)}- (10)

6eSD
The maximand of (10) can be further written as
L(p(t)) = L(p(t) +8) = Y (VI (p(t)) = VI(p )= b (11)
J€Bo ieN
Observe that the above formula involves every bidder’s valuation of every bundle of items,
S0 it involves private information. Apparently, it is impossible for the auctioneer to know
such information unless the bidders are willing to tell her. Fortunately, by Corollary 2
above she can immediately infer the difference between L£(p(t)) and L(p(t) + J) just from
the reported demands D7 (p(t)) and the price variation & because D7 (p(t)) D DI (p(t) +6)
for all j € B and all € € [0,1). In fact, when prices move from p(t) to p(t) + 6, the
reduction in indirect utility for bidder j is uniquely given by
Vi) = Vi) +6) = min a6 (12)
Consequently, equation (11) becomes the following simple formula whose right side involves
only price variation ¢ and optimal choices at p(t):
L(p(t)) = L(p(t) +6)= > min mﬂ 5= b (13)
jep, W EP (1) ieN
From the above discussion, Proposition 2 and Corollary 2, we obtain the next crucial

proposition regarding problem (9).
Proposition 3 Under Assumptions (A1) and (A2), for any p(t) € ZV we have

max__ {L(p(t)) — L(p(t) +0)} = max Z min o) al 5 — Zé} (14)

0€Conv(SD) zieDi(p et

Note that the above formula shows a dramatic change from the unobservable Lyapunov
function £ to the observable reported demands of bidders and integer price adjustment d.

The right-hand max-min formula admits an intuitive and interesting interpretation:
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e When the auctioneer adjusts the prices from p(t) to p(t + 1) = p(t) + 6(¢), she tries
to balance two opposing forces by minimizing every bidder’s loss for every possible
price change ¢ in the search set SD and choosing one price change from all possible

price changes that maximizes the seller’s gain.

e In the auction process bidders do nothing but report their demand sets D7 (p(t)) and

the auctioneer adjusts prices according to the right-hand formula of (14).

Formally, we can give the detailed steps of the auction as follows:
The Universally Convergent Dynamic (UCD) Auction

Step 1: The auctioneer announces an (arbitrary) initial integer price vector p(0) €

ZN. Let t :== 0 and go to Step 2.

Step 2: Every agent j € By reports her demand D?(p(t)) at p(t) to the auctioneer.
Based on reported demands D7 (p(t)), the auctioneer calculates an optimal solution
d(t) to the righthand problem of (14). As soon as the vector 0 of zeros is an optimal
solution to the problem, the auction stops. Otherwise, the auctioneer updates p(t +

1) :==p(t) +6(t) and ¢t := ¢t + 1. Return to Step 2.

Note that this auction may run in several forms including ascending, descending, or
both. In principle, in which form the auction operates hinges upon the search set of the

underlying demand type, the starting prices, and the time. We now have

Theorem 3 Under Assumptions (A1) and (A2), starting with any given initial integer
price vector p(0) € ZN | the UCD auction finds an integer competitive equilibrium vector

i a finite number of rounds.

Observe that the above theorem is very general and holds for all unimodular demand
types. This means that items can be substitutes, complements, or possess any other pos-
sible properties beyond substitutability or complementarity. The proof of the theorem
makes use of mainly convexity and unimodularity and does not invoke the familiar sub-
modularity. In the literature, submodularity is commonly used for the convergence of
auction; see Gul and Stacchetti (2000) and Ausubel (2006). It is known from Ausubel and
Milgrom (2002) that items are (gross) substitutes to a bidder if and only if the bidder’s

indirect utility function is submodular. Therefore, for gross substitutes, the Lyapunov
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function must be submodular. Substitutes are closely related to submodularity and com-
plements are related to supermodularity. Besides gross substitutes, there are so many
other different demand types which may not have a clear-cut property like substitutes or
complements and thus the corresponding Lyapunov function can be neither submodular
nor supermodular. As a result, it is natural and logical that the proof of the above theorem
relies mainly on convexity and unimodularity and cannot and do not use submodularity.
We now discuss the familiar ascending or descending auctions for the gross substitutes
of which we have had a far better understanding than of any other type; see e.g., Kelso and
Crawford (1982), Demange et al. (1986), Gul and Stacchetti (2000), Milgrom (2000), and
Crawford (2008) whose auctions are all ascending, and Ausubel (2006) whose auction can
be ascending or descending. Note that the well-known assignment or unit-demand market
models (see e.g., Crawford and Knoer 1981 and Demange et al. 1986) are special instances
of gross substitutes. Let D be the gross substitutes demand type given in Definition 4 of
Section 2. Then we have its search set SD = {0,1}" U {0, -1} which has a clear-cut
structure. Let A = {0,1}"V and let A be the convex hull of the set A. Let A* = —A
and A* = —A. If we use the search set A in the UCD auction and set the initial prices
p(0) so low that all the items are demanded by every agent, the auction is an ascending
one and can find the minimum Walrasian equilibrium prices. If we use the search set A*
and set the initial prices p(0) so high that none of the items is demanded by any agent,
the auction is a descending one and can find the maximum Walrasian equilibrium prices.
In the case of gross substitutes, our UCD auction is similar to Ausubel’s and Gul and
Stacchetti’s in the ascending format and similar to Ausubel’s in the descending format.
Note that Klemperer (2008, 2010, 2018) proposed sealed-bid product-mix auctions for

substitutes.

5 Dynamic Auction Design with Strategic Bidders

In Section 4 we assume that every agent acts as a price-taker. In this section we drop that
assumption by considering a more natural and more realistic environment where bidders
are strategic and may therefore act strategically, and they may also occasionally make
mistakes. We investigate how we should expect such individuals to behave and how to

prevent their possible manipulation and miscalculation and how to allow them to learn,
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adjust, and correct if they make mistakes or behave badly. To address these questions,
we develop an efficient, incentive-compatible dynamic auction mechanism built upon the
basic dynamic auction introduced in the previous section.

Recall that M stands for the (original) market with m bidders and the seller with the
set NV of n items. For every bidder j € B, let M_; denote the market M without the
participation of bidder j and B_; = By \ {j}. For convenience, we set M_y = M and
B_g = By. So, for every k € By, market M_j; comprises the set B_j of agents and the
set N of n items. The seller always participates in every market and is not strategic.

The following defines the Vickrey-Clarke-Groves (VCG) mechanism; see Vickrey (1961),
Clarke (1971), and Groves (1973). The definition given below is more general than its stan-
dard one because we permit the seller to have a reserve function; see Ausubel and Cramton
(2004) on a similar extension for divisible goods. The standard one assumes that the seller
values everything at zero. Recall that R(IN) denotes the market value of the items in N
for the market M. Let R_;(IN) represent the market value of the items in N in the market

M_; for every j € B based on the reported u/ (j € By).

Definition 9 (VCG Mechanism) The VCG mechanism is the following procedure: Every
agent j € By reports her value function u’/. The auctioneer computes an efficient allocation
X with respect to all reported v’/ and assigns bundle z/ to bidder j € B and charges him
a payment of (7 = w/ (29) — R(N) + R_;(N), where R(N) and R_;(N) are the market
values of the items in IV in the markets M and M_; for all j € B, respectively. Bidder
J’s VCG payoff equals R(N) — R_;(N), j € B.

It is known from Green and Laffont (1977) and Holmstrom (1979) that in the setting
of transferable utility any strategy-proof mechanism must generate the VCG outcome. As
discussed earlier, strategy-proof dynamic auctions have distinct advantages over those of
sealed-bid. In the case of a single item, it is easy to understand that the English auction
achieves the same outcome as the second-price sealed-bid auction does. For the assignment
market of Koopmans and Beckmann (1957) and Shapley and Shubik (1971), Crawford and
Knoer (1981) proposed the first dynamic auction which converges to a competitive equi-
librium by a limiting argument. Leonard (1983) showed that the minimum competitive
equilibrium price vector of this market coincides with the VCG payment. Demange et
al. (1986) proved that their dynamic auction finds the minimum competitive equilibrium

price vector and is strategy-proof in the sense of achieving an ex post Nash equilibrium
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for sincere bidding. For the general gross substitutes (GS) model of Kelso and Craw-
ford (1982), Gul and Stacchetti (2000) demonstrated that their dynamic auction finds
the minimum competitive equilibrium price vector but cannot be strategy-proof. Ausubel
(2006) proposed a strategy-proof dynamic auction for the GS model by ingeniously ex-
ploring the m + 1 markets M_; for j € By in the definition of the VCG outcome. His
analysis (Ausubel 2006, pp. 612-616, 622-624) on the strategy-proof outcome concentrates
on divisible goods and relies on calculus, convex analysis, and Theorem 1 of Krishna and
Maenner (2001). After introducing his basic dynamic auction for the indivisible GS goods,
Ausubel (2006, p. 620) briefly mentioned that his argument on strategy-proof results for
the divisible goods also applies to the indivisible GS case.

Here we offer a general analysis on strategic issues concerning indivisible goods and all
unimodular demand types. Although Ausubel’s auction and ours share similar strategic
properties such as ex post perfect Nash equilibrium for sincere bidding, his analysis and
ours are markedly different in nature and complement each other. Our analysis has to use
combinatorial arguments and rely on recent progress in discrete/combinatorial optimiza-
tion. More precisely, our strategy-proof results Theorems 4 and 5 depend on Theorem 3 in
Section 4 which in turn depends on Theorems 1 and 2, whose proofs rely on recent results
from discrete optimization, quite distinct from calculus and convex analysis. Recall that
Assumptions (Al) and (A2) for our model underlie our results of discrete/combinatorial
nature. Barring the use of Theorem 3, the argument for our Theorems 4 and 5 is combi-

natorial, intuitive, elementary, and noticeably different from that of Ausubel (2006).

5.1 Incentive Compatible Dynamic Auction Design

We now introduce an incentive-compatible dynamic auction mechanism based on the UCD
auction. Because bidders are strategic agents, they may submit whatever bids they like
in their best interests without openly flouting the auction rules and therefore their bids
could be different from their true demand sets. The mechanism runs the UCD auction as
described in Section 4 for every market M_j (k € By) with the following modifications.
Consider every market M _j,, k € By. Let p*(t) € Z" denote the prices of the market M_,
at time t € Z,. Then at time ¢t € Z, and with respect to p¥(t), every bidder j € B_y
submits a bid Bi(t) C {0,1}" which may differ from his true demand set D’(p¥(t)),

but the seller’s bid BY(t) always equals her true demand set D°(p*(t)). The auctioneer
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calculates an optimal solution 6¥(t) to the following modified righthand problem of (14)

max { min 2/ - § — Z(S’} (15)

5eSD ni
JEB_, T EBL() iEN

It is important to observe that in the above formula we replace the true demand set
DJ(p*(t)) in (14) by bid Bi(t) in order to take strategic behavior of bidders into consid-
eration. This can change the outcome of the auction and may have serious implications.
When the vector 0 of zeros is an optimal solution to (15), this means that the auction
finds an ‘equilibrium allocation’ X* = (2*J, j € B_;) in the market M_y, in the sense that
xki ¢ Bi(t) forevery j € B_pand ) ;cp | ahd =37,y e(i). Otherwise, when 0 is not an
optimal solution to (15), the auctioneer updates prices by setting p*(t +1) = p*(t) + 6% (t).
Because bidders may act strategically and so their bids may not be their true demand sets,
it is possible that the auction may never find an equilibrium allocation in some market
M _g. In this case, the auction fails to terminate and will require every bidder to pay a

penalty ¢ > 0 for nothing. We now present the auction.

The Incentive Compatible Universal Dynamic (ICUD) Auction

Step 1: At first, the auctioneer announces a common price vector p*(0) = p(0) € ZV

for all markets M_g, k € By. Let t := 0 and go to Step 2.

Step 2: At prices p*(t) € ZVV, every agent j € B_;, submits her bid Bi(t) C {0,1}".
Based on the reported bids, if the vector 0 of zeros is an optimal solution to (15),
the auctioneer finds an equilibrium allocation X* in market M_j,, and records the
current prices as p¥(T*) € Z" and the current time as T% € 7, . For any market M _,
which is not ‘in equilibrium’, the auctioneer calculates an optimal solution §*(¢) to
(15) and announces a new price vector p*(¢ + 1) = p*(¢) + 6*(¢). The auction goes
back to Step 2 with ¢ := t 4+ 1. If the auction has found an equilibrium allocation
X* in every market M_;, k € By, go to Step 3.

Step 3: All markets now clear. For every k € By and every agent j € B_j at every
timet =0,1,--- ,T%—1, based on her reported bids Bi; (t) and the price change 6% (t),
the auctioneer calculates agent j’s ‘indirect utility reduction’ A?(t) when prices are

changed at time ¢ from p*(t) to p*(t + 1) in the market M_j,, where

AF(t)= min a7 - 5(). (16)
zIeB](t)
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Every bidder j € B will be assigned the bundle 2% of the allocation X° = (2%, j €
By) found in the original market M_y = M and asked to pay (3;, with the option
to decline and walk away freely, when his payoff becomes negative, where
T°-1 -1 _ o
Bi= 2 (X aht) = X Al) +a -y (19) =" (1) (17)
heB_;  t=0 t=0
The seller keeps the bundle 290 of the allocation X and receives the total payment

EjeB Bj. The auction stops.

The payment formula (17) has three terms and can be explained intuitively as follows:
The first term is the accumulation of ‘indirect utility reduction’ of bidder j’s opponents in
B_; along the path from p?(77) to p(0) in the market M_; and along the path from p(0)
to p?(T°) in the market M; the second term stands for the total equilibrium payment
by all bidders in the market M_j;, i.e., all opponents of bidder j; and the third term
represents the total equilibrium payment by all opponents of bidder j in the market M.
The final payment §; of bidder j equals the first term by adding the second term and
subtracting the third term. This payment formula is simple and easy to calculate, using
only revealed information, and having an intimate relation with the VCG payment as to
be shown later. Every bidder can easily use this payment formula to calculate his own
payment so can the seller for every bidder.

A bidder j is said to make mistakes or manipulate if his bid B7(t) does not equal
his true demand set D’(p(t)) at prices p(t). Observe that in Step 3 of our auction we
allow any bidder j € B to decline any unacceptable assignment and walk away freely, if
accepting the assignment would give him a negative utility of u’(2%7) — Bj < 0, which
is caused by mistakes or manipulation. We call this option of letting bidders walk away
empty-handed without paying any penalty a lenient policy. This lenient policy is different
from Ausubel’s. In his auction, no bidder is given any opportunity to walk away freely
and may have to pay a huge amount® according to the payment formula (7) of Ausubel
(2006, p. 611) if mistakes or manipulation have been made before a time ¢. This ends our
discussion on the case when the auction terminates in Step 3, i.e., in finite time. Now
we turn to another case—the broken down case-when the auction does not terminate. In

this case, our auction adopts a slightly different lenient policy which requires every bidder

5This amount depends on bidders’ behavior and is not known in advance.
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to pay a fixed penalty ¢ > 0 and get no item. This lenient policy is also different from
Ausubel’s auction (2006, p. 613) which imposes a severe penalty of infinity.

These policies are not so innocent as they might appear. For Ausubel’s auction, the
severe penalty of infinity is necessary for the broken down case, because when bidders
make mistakes or manipulate and his auction stops, the payment of every bidder can be
extremely large and is unknown in advance so the only way of preventing his auction from
not stopping is to impose the penalty of infinity for every bidder. For our auction, the
light penalty of ¢ > 0 for the broken case is possible, because our auction in Step 3 allows
bidders to walk away freely if their payoffs become negative. Our lenient policies provide
better opportunities for buyers to learn and adjust without paying high costs. But they
could be a disadvantage to the seller in the sense that the seller might not get a high
penalty as given by Ausubel’s auction.

It is also interesting to note that our ICUD auction can tolerate any mistake or ma-
nipulation made by bidders and allows bidders to learn, adjust, and correct so that for
any time t* € Z,, no matter what has happened before t*, as long as from t* on every
bidder bids truthfully and Assumptions (Al) and (A2) are satisfied, the ICUD auction
will find a competitive equilibrium in every market in finite time in Step 3, because the
UCD auction converges to a competitive equilibrium wherever it starts from ZV. In this
case, bidders may have to pay more by (17) than they act honestly and make no mistakes.
But they will never pay to such an extent that their payoffs become negative.

Another difference between Ausubel’s strategy-proof auction and our ICUD auction is
that his auction and payment rules are not symmetric and payment formula (7) of Ausubel
(2006, p.611) involves Stieltjes integrals of continuous price functions, whereas our ICUD
auction and payment rules (16) and (17) are symmetric, simple, and easy to calculate.”

To facilitate a better understanding of the ICUD auction we use Example 1 to illustrate

its operation before investigating its strategic properties. The auction starts with the prices

"Our ICUD auction starts with the same initial price vector p(0) for all markets M and M_;, j € B,
whereas Ausubel’s auction (Ausubel 2006, pp. 615-616) starts with the same initial price vector p(0) only
for the markets M_;, j € B, but for the market M his auction starts with the equilibrium price vector
p* of any chosen market M_g«. In his auction, the payment of bidder k* is given by Equation (7)
(Ausubel 2006, p. 611) using the price vectors along the path from pik* to p*. The payment of bidder j
(j € B_g+) is also given by Equation (7) but using the price vectors along the path from p~7 to p°; the

k

path from p° to p~ *; and the path from pik* to p*.
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p(0) = (pa(0),pp(0)) = (0,0) and terminates in round ¢ = 5. Prices p*(¢), increments
5% (), bids Bi(t), and indirect utility reductions A?(t) in each round ¢ are shown in Table 4.
At t = 5, we have p°(5) = p'(5) = p?(5) = p3(5) = (2,3), X0 = (290,201 202 03) =
0,AB,0,0), X' = (210, 212 213) = (0, AB,0), X2 = (229 22! 223) = (), AB, (), and
X3 = (239 231 232) = (0,0, AB). We also have B_; = {0,2,3}, B_» = {0,1,3}, and
B_3 ={0,1,2}. Taking utility reductions A;‘?(t) in Table 4 into pricing formula (17) yields

681 =05, B =0 and B3 = 0. Here we give one instance in detail:

Bt = Yo AS(t) — g A§(E) + 20 pl(5) — 200 pO(5)
+ Yo A(t) — i AY(E) + 212 pl(5) — 202 - pO(5)
+OY o AN — S AL(E) + 2B pl(5) — 2% pO(5) =5

Consequently, bidder 1 gets the bundle AB and pays 5 in return and the other two bidders

get nothing and pay nothing. The seller receives 5 for the sale of her goods A and B.

5.2 The Dynamic Auction Game and Its Strategic Properties

Now we discuss how the ICUD auction can induce strategic bidders to bid truthfully as
price-takers, generating efficient outcomes even when these bidders have market power.
In particular, we will show that sincere bidding is an ex post perfect Nash equilibrium.
This can be seen as a vivid practical application of the fundamental solution concept for
dynamic games of incomplete information; see Fudenberg and Tirole (1991).

We need to formulate our ICUD auction as an extensive-form dynamic game of in-
complete information. In this (dynamic) auction game, all bidders are players. Prior to
the start of the game, every player j € B knows privately only his own value function u/
satisfying Assumptions (A1) and (A2). The auctioneer knows that every bidder’s utility
function satisfies Assumptions (A1) and (A2) but does not know their utility functions.
The auctioneer initially announces a common price vector for all markets and every bidder
responds by reporting his bid to the auctioneer for every market in which he is involved.
Then based on reported bids the auctioneer checks if the aggregated demands equal the
aggregated supplies in every market or not. If all markets are cleared, the auction stops.

Otherwise, the auctioneer adjusts prices and bidders update their bids.
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Table 4: INlustration of the ICUD Auction.

Time ¢t | Prices P*(t) | Increments 5% (t) Bids Bi (t) Utility Reductions A;“(t)
BY(0) = {AB}, B}(0) = {AB}
PO(0) = (0,0) | 6°(0) = (1,0) ; AJ(0) =1, AY(0) = 1, AY(0) = 1, AJ(0) = 1
P00 | 510w B2(0) = {AB}, B3(0) = {AB} 0 A1(0)=11 A1(0)=21 A1(0)=31
B oo oo BY(0) = {AB}, B}(0) = {AB}, B}(0) = {AB} oA
t=0 | P2(0)=(0,0) | %(0)=(1,0) 0001 — LABY. B0 — LABY. B3O — A A3(0) =1, A3(0) = 1, A3(0) = 1
P3(0) = (0,0) | 63(0) = (1,0) By(0) =145}, B,(0) = {45}, B;(0) = {45} A3(0) =1, A3(0) =1, A3(0) = 1
( ’ ’ B3(0) = {AB}, B}(0) = {AB}, B3(0) = {AB} ° ! T
BY(1) = {AB}, B}(1) = {AB}
PO(1) = (1,0 89(1) = (1,0 0 0 A1) =1, A%(1) =1, AY(1) = 1, A9(1) = 1
1()7( ) 1() (1,0) B2(1) = {AB}, B3(1)  {AB} o()1 ,1()1 f()l f()
Pi(1)=(1,0) §1(1) = (1,0) Aj(1)=1,A5(1)=1,A3(1) =1
, , BY(1) = {AB}, B}(1) = {AB}, B}(1) = {AB} : : :
t=1 | P2(1)=(1,0) | (1) =(1,0) o . s AZ(1)=1,A2(1)=1,A%(1) =1
P3(1)=(1,0) | 63(1) = (1,0) Ba(l) = 1AB), By(1) = {AB}, B3 (1) = {45} AB(1) =1, A3(1) =1, A3(1) =1
‘ - BY(1) = {AB}, By(1) = {AB}, B}(1) = {AB} C T e
BY(2) = {AB, B}, BY(2) = {AB}
PY(2) = (2,0 §9(2) = (0,1 0 0 AJ2)=1,A%2) =1, AJ(2) =1, A3(2) =1
PlEQ; - Ea 0; 51;; - EO 1; B3(2) = {AB}, B}(2) = {AB) o )Mg) o )Al(z) - )Al(z) e
) ‘ ) ’ BY(2) = {AB, B}, B}(2) = {AB}, B}(2) = {AB} . e e
t=2 | P2(2)=(2,0) | §%(2)=(0,1) 00— (4 L) — 1 30— (4 AZ(2)=1,A2(2) =1, A3(2) = 1
P3(2)=(2,0) | 63(2)=(0,1) By(2) ={AB, B}, B;(2) = {AB}, B;(2) = {A5} A3(2) =1, A3(2) =1, A3(2) =1
’ 7 BY(2) = {AB, B}, B}(2) = {AB}, B}(2) = {AB} ’ ! e
BY(3) = {AB, B,0}, B}(3) = {AB}
PO(3) = (2,1 §9(3) = (0,1 0 0 A%(3) =0, AY(3) =1, AY(3) =1, A(3) = 1
P1E3; _ E? 1; 51E3§ _ EO 1; B2(3) = {AB}, B3(3) = {AB} ol )A1(3) :lf))AIB) :2(1 )A1(3) :3(1)
B o o BY(3) = {AB, B,0}, B}(3) = {AB}, B}(3) = {AB} A
t=3 | P’@) =21 | 8(3)=(01) . . : A%(3) =0, A3(3) =1, A3(3) =1
P —@1) | #@ 0 | 5O {4550 BI®) = (4B}, BiG) = (4B} A3(3) — 0, AYE) — 1 AE) - 1
’ ’ BY(1) = {AB, B,0}, B}(3) = {AB}, B}(3) = {AB} ’ ! e
BY(4) = {0}, Bj(4) = {AB}
PO(4) = (2,2 59(4) = (0,1 0 o AO(4) =0, A2(4) =1, A(4) = 1, AQ(4) =0
1()7( ) 1()7( ) B2(4) = {0}, B3(4) — {AB,0} o()1 ,1()1 j()l j()
Pl(4)=(22) 0'(4) =(0,1) Aj(4) =0, A3(4) =1, A3(4) =0
, , BY(4) = {0}, B}(4) = {AB}, B}(4) = {AB, 0} . ; ;
t=4 P (4): (2,2) 6%(4) = (0,1) 0 1 3 A0(4) =0, A1(4) =1, A3(4) =0
P3) = (2,2) 5(4) = (0,1) Bj(4) = {0}, By(4) = {AB}, B5(4) = {AB, 0} A(4) = 0, A3() = 1, AB() = 1
7 - BY(4) = {0}, B}(4) = {AB}, B}(4) = {AB} c T e
BY(5) = {0}, B§(5) = {AB, A, 0}
PO(5)=(2,3) | 48°(5) = (0,0) e ey Ad(5) =0, AY(5) =0, AJ(5) =0, AJ(5) =0
Pi(5)=(2:3) | 6'(5)=(0,0) o O A A0 B 0 Ab(5) =0, A(5) = 0, A}(5) =0
, , , BY(5) = {0}, B}(5) = {AB, A,0}, B}(5) = {0} 0 : :
t=5 | P2(5)=(2,3) | 42(5) = (0,0) o 1 " A2(5) = 0, A2(5) = 0, A2(5) = 0
Py — 23 | 56— (00 BY(5) = {0}, BY(5) = {AB, 4,0}, B}(5) = {0} AR(5) — 0, A35) — 0. AIE) — 0
’ ’ BY(5) = {0}, BY(5) = {AB, A,0}, B3(5) = {AB, A, 0} ’ ! e

In this auction, announced prices in each market can be observed by all bidders. Every

bidder knows of course his own bids. Whether a bidder can observe bids of other bidders

depends on the specification of the auction rule. In the current auction the auctioneer

can ask every bidder to either publicly reveal his bids or just submit his bids privately to

her. We use H; to denote the part of the information or history of play that player j has

observed so far right after prices at time ¢ € Z,; have been announced but no players have

placed their bids at the current prices. A natural specification is that Hjt contains his own

utility function u?, all observable prices before and at time ¢ in every market in which he

takes part, all his own bids and all possibly revealed bids of other players before time t.
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At every time t € Z, after the auctioneer announces current prices for each market,
every bidder will think about how to bid based upon all currently available information to
him. The (dynamic) strategy o; of player j, j € B, is a set-valued function which specifies
his bids o;(t, k, H}) = Bi(t) € {0,1}N for every market M_j, k € By \ {j}, at every
time t € Zy, and for every history Hjt Let XJ; denote the strategy space of all player
Jj’s strategies 0;. Obviously, player j’s strategy space X; contains his sincere bidding
strategies as specified in Definition 7 and many other strategies as well. The outcome
of the ICUD auction game relies totally upon the auction rules, the histories, and the
strategies the bidders may adopt. When every bidder j € B takes a strategy o; € X, and
the ICUD auction terminates in Step 3, then bidder j € B receives bundle 2%/ and pays Bj
given by (17), or simply walks away. In this case, his payoff equals max{u/(z%7) — j3;,0}.
Otherwise, the auction is in the broken down state in which every bidder gets no item but
pays a fixed penalty ¢ > 0.

In the literature for static auction games of incomplete information, the notion of
ex post equilibrium has been used by Cremér and McLean (1985), Krishna (2002), and
Perry and Reny (2005). This solution requires that the strategy for every player should
remain optimal if the player were to get to know types of his opponents. Ausubel (2004,
2006) and Sun and Yang (2014) have adopted the solution of ex post perfect equilibrium
to dynamic auction games of incomplete information which requires the same condition

for every player at every node of the dynamic auction game.

Definition 10 (Ex Post Perfect Nash Equilibrium) The strategy m-tuple {o;};ep of the
dynamic auction game of incomplete information is an ez post perfect (Nash) equilibrium
if for every time t € Z, following any history {H]t»}je B, and for any realization {u’};cp of
private information, the continuation strategies o;(-,-,- | t,k, H;) for every player j € B
and for every market k € By \ {j} constitute a Nash equilibrium of the game even if the

realization {u’};cp becomes common knowledge.

An important advantage of ex post perfect equilibrium over Bayesian equilibrium or
perfect Bayesian equilibrium is that it is not only robust against any regret but also
independent of any probability distribution. It is very useful in practice as it is very
difficult to elicit or gauge a probability distribution of a bidder’s valuation. The notion

of ex post perfect equilibrium is a refinement of ex post Nash equilibrium and therefore
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more desirable and stronger than the latter.

Now we demonstrate several important and appealing properties of the ICUD auction.

Theorem 4 Under Assumptions (Al) and (A2), if every bidder bids sincerely, the ICUD
auction converges to a competitive equilibrium, yielding a VCG outcome for the market

M, in a finite number of rounds.

Theorem 5 Under Assumptions (Al) and (A2), sincere bidding by every bidder is an ex
post perfect equilibrium in the ICUD auction.

We say that a mechanism is beneficial to every agent if the payment the seller receives
for every sold bundle is at least as big as her reserve price of the bundle or the total utility
she receives is at least as good as she does not trade, and if the net profit for every bidder

is nonnegative.

Proposition 4 Under Assumptions (Al) and (A2), if every bidder bids sincerely, the
ICUD auction mechanism is beneficial to every agent, provided that the seller’s utility

0

function u” is either submodular or superadditive.

An auction mechanism is said to be ex post individually rational, if, for every bidder,
no matter how his opposing bidders act in the auction, as long as he is sufficiently able to
judge whether his payoff is negative or nonnegative, he will never end up with a negative
payoff. This property is quite desirable for practical auction design. We conclude with

the following proposition.

Proposition 5 Under Assumptions (A1) and (A2), the ICUD auction is ex post individ-

ually rational.
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Appendix

We first review several mathematical concepts. A polytope can be also defined as a
convex hull of finitely many vectors in RY. An edge of a polyhedron is a face of dimension
one and a vector is an edge-direction vector of an edge if it is a non-zero scalar multiple of
the difference of any two distinct points on the edge. So, if v is an edge-direction vector,
then awv for any « # 0 is also an edge-direction vector so is —aw.

A set S C ZV is discrete convexif S = Conv(S)NZYN. A function f : ZV — R is discrete
concave if, for any finite number of \; > 0, j = 1,--- ,¢ and any 2l eZN forj=1,---,t
with Z;-:l Aj =1 and Z;Zl Njxd € ZV, we have f(z;zl Njal) > > =1 Ajf(z7). Given
a lattice S C ZV, a function f : S — R U {400} is submodular if f(z) + f(y) > f(z vV
y) + f(x Ay) for any xz,y € S. When a utility function of items is submodular, it has
decreasing marginal returns over any item. This means that items exhibits substitutability.
A function f : S — Ris subadditive if f(x+y) < f(z)+f(y) for any z,y € S. Subadditivity
reflects a more general substitutability. A function f is supermodular if — f is submodular.
If a utility function of items is supermodular, then these items have increasing marginal
returns and show complementarity. A function f is superadditive if —f is subadditive.
Superadditivity is more general than supermodularity. See Murota (2003) and Fujishige
(2005) in detail. Given a utility function u : S — R U {—o0} with a finite set S c ZV
and fdom(u) > 1, we say that a set D, of primitive vectors in Z" is a demand edge-set of
function u if every v € D, is an edge-direction vector of the convex hull of some demand
set Dy (p) with $D,(p) > 1. Observe that we have v € D, if and only if v is normal to
some facet of the LIP 7T,.

Proof of Proposition 1: Let D = {v!,v? --. vF —o! —02 ... 0¥} be an arbitrarily
given unimodular demand type. To prove the result, it suffices to consider the n x k
integer matrix A = [v!,v2,--- , v¥]. If the rank of A, denoted by rank(A), is equal to n,
we are done. Assume that rank(A) = r < n. Choose a submatrix B formed by r linearly
independent columns of A. Then by definition there exists an n x (n — r) matrix C' such
that the matrix U = [C:B] is unimodular. Below [; and O(n—1yx1 represent the identity

matrix of order [ and an (n — 1) x [ matrix with entries 0's, respectively. We have

: In—"“ On—r r
UV CiB] = ()

Orx (n—r) I,
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Now choose another submatrix D formed by r linearly independent columns of A. To ease
exposition but without loss of generality, we assume that A = [B:D]. We will show that
[C:D] is unimodular, i.e., both B and D can use the common set C' to form unimodular

matrices. Note that for some r x r matrix Dy with rank(Dg) = r we have

o I, On— Om—
Uﬁl[CZBZD] _ n—r (n—r)xr (n—r)xr 7 (19)
Orx(nfr) I Dy
where the form of the last r columns follows from the assumption that rank(A) = r.
Moreover, there exists an n x (n — r) matrix E such that the matrix V = [E:D] is

unimodular. Then for some r x r matrix By with rank(By) = r we have

Ch O(n—T) X7 O(n—’/‘) X7

vlciBiD) = | (20)
Co By I,

Since U and V' are unimodular, it follows from (20) that we have

det(VYC:B]) = det(Cy)det(By) = +1(= det(V1U)). (21)
Hence from (21) we have

det(By) = +1. (22)
since C and By are integer matrices.

Because of the symmetry between (B,U) and (D, V') we also have
det(Dy) = +1 (23)

as a counterpart of (22). Hence, [C:D] is also unimodular because of (19). Consequently,

we can use C instead of E for D to get a unimodular matrix [C:D]. We are done. O

The proof of Lemma 1 is easy. Also, Lemma 2 follows immediately from the definition
of Lyapunov function £ and Lemma 1.
Proof of Lemma 3: By the assumption the demand edge-set D,, is full-dimensional
and so is the demand type D(2 D,,). Let x* be an extreme point of the full-dimensional,
convex hull of the set D, (p). There exists a set of n linearly independent edge-direction
vectors dy,--- ,d, € D, that are extreme vectors of the tangent cone of the convex hull
of the set Dy (p) at z*. Let y = p- (z — 2*) + u(z*) be the hyperplane that supports u at
every point of D, (p). Then we have

p-di =u(z* +d;) —u(z™) (Vi=1,---,n). (24)
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Since dy,--- ,dy € D form a unimodular matrix and the right-hand side of (24) is an
integer for each i = 1,--- ,n by the assumption, p is a unique integral vector satisfying

equation (24). O

The following result is given in Tran and Yu (2019), revealing an important property
concerning the unimodular demand type and will be used in our proof of Lemma 4 below.

See Murota and Tamura (2024) for a survey on this result.

Lemma 6 Suppose that M is a unimodular matriz, and that P and Q are integral

polytopes with edges parallel to columns of M. Then, PNZN +QNZN = (P+Q)N YA

Proof of Lemma 4: Take any 2/ € D/(p) for all j € By. Then g(z) = > ieBo u? (z7)

with =3 .cp 27. By definition for all j € By we have
w (2)) —p-x? >l () —p-y’, forall 3 € dom(yg). (25)

Clearly, for all 3/ € dom(g) (j € Bo) satisfying > jeBo =3 v/ we have

J€Bo
w(a?) —p-al >l (y)) —p-y.

Now adding all inequalities up yields
S i) = Y wl(y) (26)
j€Bo J€Bg

for all ¥/ € dom(g) (j € Bo) satisfying > icBo ) = > ieBo y/. By definition u(x) =
> ieBo u?(27). Observe that the inequality (26) still holds true if g(z) = > jeBo ul(27)
withe =2=3% . p 2J and 2/ € DI(q) for j € By and ¢ # p. This shows g(z) = u(x) and
g is well-defined.

Because of the definition of convolution, for any p € RY we have

Dy(p) = max{u(z) —p-z |z € ZV} = Z max{u(z’) —p- 27 | 27 € {0, 1}V}. (27)
J€Bo

It is clear that D, (p) = DM*(p). Hence we have the following relation, i.e., equation (6):
DY*(p) = D°(p) + D' (p) +--- + D™ (p) = Du(p). (28)

Since by Assumption (A2) all D’(p) (j € By) have the same unimodular demand type D

and the Minkowski-sum operation is associative, it follows from (28) and Lemma 6 that

34



Dy(p) also has the same unimodular demand type D and Conv(D,(p)) N ZY = D,(p).
Because for every p € RY the set D, (p) is discrete convex, u is clearly a discrete concave

function with the unimodular demand type D. O

Proof of Theorem 1: Let P be the set of competitive equilibrium price vectors. It
follows from Baldwin and Klemperer (2018, Theorem 4.3) that there exists at least one
competitive equilibrium price vector. Because all u’, j € By, are integer-valued and
of unimodular demand type D, it follows from Lemma 4 that their convolution u is a
discrete concave integer-valued function with the same unimodular demand type D. We
know that p € R" is a competitive equilibrium price vector if and only if it is a minimizer
of the Lyapunov function £. The convexity of the function £ implies that the set P is
a polyhedral convex set since the function £ is polyhedral by Lemma 2. Clearly, it is
nonempty and bounded, and hence it is a polytope.

Next we prove that every vertex of P is integral. This follows immediately from the
fact that the extreme points of the set P are normal vectors p of hyperplanes supporting
the convolution u at a full-dimensional demand set D$(p) and hence integral by Lemma 3

because of Assumptions (A1) and (A2). 0

Proof of Lemma 5: Let M = [dy, - ,d,—1,dy] be the n X n matrix and 0* be the nth
row of M~!. Then we have 0*-dj =0for j=1,---,n—1and 6" -d, = 1. Since M is a
unimodular matrix, 0* is an integral vector. Hence §* = ad or §* = —«ad for some a > 1

because of the definition of §. Consequently, we have a0 - dp| = 0* - d,, = 1. O

Proof of Proposition 2: We only need to consider the case that p(¢) is not a Walrasian
equilibrium price vector. Choose any § € SD. Let d be a primitive normal vector of
an (n — 1)-dimensional space spanned by dy,--- ,d,—1 € D. We need to consider the
convolution u of all u/ defined by (4) and the associated Minkowski sum D¢ given by
(6). It follows from Lemma 4 that D™* has the same demand type D as every bidder has.

Regarding L£(p(t) +9) as a function in € > 0, we have a function that changes linearly
as ¢ increases from 0 up to the point € = £* > 0 where DM*(p(t) + &) \ DM5(p(t)) # 0.
This is equivalent to that for all j € B we have D7 (p(t) +e6) C DI(p(t)) (Ve € [0,e%))
and for some j € B we have D7 (p(t) +¢*6) \ D’(p(t)) # (). Also note that DM*(p(t) + &)
remains the same for all ¢ € (0,£*). Observe that if such a point €* does not exist, we

consider €* = +o00 and we can choose ¢ = 1 < €* in the following argument. Hence we
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assume such a finite €* always exists. Then there exist some d* € D and an element (a
vertex) * of DM#(p(t)+¢e6) for 0 < € < £* such that 2*+d* € DM3(p(t)+e*6)\ DM (p(t))

and for the convolution u of all 4/ we have

u(z® +d*) = (p(t) +*0) - ((z* + d*) — z*) + u(z™). (29)
From this we have

%0 - d* =u(x* +d*) —u(z*) —p(t) - d*. (30)

Moreover, we can see that d* is not spanned by di, -+ ,d,—1. Hence dy, -+ ,dp_1,d*
is linearly independent and we have § - d* > 0 due to the definition of d*. It follows from

Lemma 5 that we have
0<d-d <1. (31)

Since the right-hand side of (30) is a non-zero integer, we see from (30) and (31) that
e* > 1.

Since 6 € SD is chosen arbitrarily in the above argument, we see that for each § € SD
the function £(p(t)+ed) in € is linear on the interval [0, 1]. Hence L(p(t)+¢’) as a function
in ¢’ is a polyhedral conical convex function restricted on Conv(SD). This implies that

equation (8) holds. O

Proof of Corollary 1: We see from the proof of Proposition 2 that L(p(t) + ¢') as
a function in ¢’ is a polyhedral conical convex function restricted on Conv(SD) and is
generated by function values L£(p(t) + £d) for all € € [0,1] and all § € SD. Hence the set

of solutions to the left-side problem of (8) is a nonempty integral polytope. 0

Proof of Corollary 2: The proof of Proposition 2 implies that D7 (p+¢8) € D’(p) and

hence

2/ €arg min z-6
z€DI(p)

lies in D7 (p + &d) for all ¢ € [0,1). If DI(p+ &) € D’(p), then we have

Di(p)N D (p+6) =arg min -z = ar ma - x. 32
() (p+90) g, i 8 omax (32)
Hence 27 € arg Mil, e pj(p) T - 0 lies in DI (p+6). O
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Proof of Theorem 2: By Theorem 1 the auction market has a competitive equilibrium
with an integral equilibrium price vector. Then by Proposition 1 of Ausubel (2006) and
Lemma 1 of Sun and Yang (2009), a vector is a competitive equilibrium price vector if
and only if it is a minimizer of the Lyapunov function.

Obviously, if p* is a minimizer of the Lyapunov function £, clearly it holds £L(p*) <
L(p* +0) for all § € SD.

Assume now that L(p*) < L(p* + 0) for all § € SD. We claim that L(p) > L(p*)
for all p € RY. Then p* is a minimizer of the Lyapunov function £. Suppose to the
contrary that there exists some p # p* such that L(p) < L(p*). Since Conv(SD) is a
full-dimensional convex set in RY containing the n-vector 0 of zeros in its interior and
so the set {p*} + Conv(SD) is also a full-dimensional convex set in RY having p* in its
interior, one can easily take a strictly convex combination p’ of p and p* by choosing a
sufficiently small o € (0,1) such that p’ = ap+ (1 — a)p* € {p*} + Conv(SD) and is close
to p*. Because of the convexity of £(-), a > 0, and L(p) — L(p*) < 0, we have

L) < al(p) + (1 — a)L(p") = L(p") + a(L(p) — L(p")) < L(p"). (33)
It follows immediately from Proposition 2 and inequality (33) that

. * — . * < / *
5ec§‘11vr(lsp)£(p +0) = min L(p" +9) < L(p') < L(p")

contradicting the hypothesis. This shows that £(p*) < £(p) holds for all p € RY and so

p* is a minimizer of the Lyapunov function L, i.e., a competitive equilibrium price vector.

O

Proof of Corollary 3: By Theorem 1, the set of competitive equilibrium price vectors
is a nonempty integral polytope. By assumption, p is not a minimizer of L, i.e., p is not
a competitive equilibrium price vector. Suppose to the contrary that there is no § € SD
such that L(p + 0) < L(p). Then we must have L(p) < L(p + 0) for all § € SD. By
Theorem 2, p is a minimizer of the Lyapunov function £, contradicting the assumption.

d

Proof of Theorem 3: Because the Lyapunov function £(-) is convex and bounded from
below and has a minimizer, any minimizer of the Lyapunov function is a competitive
equilibrium price vector. Since the prices and value functions take only integer values and

the UCD auction lowers the value of the Lyapunov function by a positive integer value
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in each round, the process must terminate in finite rounds, i.e., §(t*) = 0 in Step 2 for
some t* € Zy. Let p(0),p(1),---,p(t*) be the generated finite sequence of price vectors.
Clearly, we must have L(p(t*)) < L(p(t*) + ) for all § € SD. Otherwise, we would have
L(p(t*)) > L(p(t*) + 9) for some § € SD with 6 # 0, contradicting d(¢t*) = 0. It follows
from Theorem 2 that p(¢*) is a minimizer of the Lyapunov function, i.e., a competitive

equilibrium price vector. O

Proof of Theorem 4: Because every bidder j € B bids straightforwardly according to
his true UTD D function u/ and Assumptions (A1) and (A2) are satisfied, by Theorem 3 of
Section 4 the auction finds a competitive equilibrium (p*(T*), X*) in every market M_y,
k € By. As bidders act truthfully, then for every bidder j € B_j, in every market M _ at
any time t € Z; we have Bi(t) = Di(p*(t)). Tt further follows from (12) in Section 4 that

Aj( = min o 50) = V() = V0 + 1)

By the rule in Step 3 of the auction, every bidder j € B pays (; of (17) for the bundle
297 assigned to him. It will be shown that j3; is actually equal to the VCG payment
of bidder j given by 7 = w (290) — R(N) + R_;(N), where R(N) = Y, puf (z%h)
and R_;(N) = ZheB_j u? (27").  Recall that p*(0) = p(0) for every k € By. It follows

from (17) that

Bi = Tnen, [T A% - TG AL0) +ath - pi (T9) — 200 (1)

= Shes, (S5 V000) - VA + 1))

~ S V) = VIt + 1))

+2nen_, ahl I (T7) — 2 heB., a®h - pO(1°)

= Yhen, ((V0°0) - V' 0<T0>>>—<vh<pj<o>>—v’l<pﬂ‘<Tj>>>)

+ZheB abh . pi (T7) — ZheB a® . pO(T°)

Shen, (V (pj(TJ>>+w-pJ<Tﬂ>) —zheg,].( REO(T?)) + 207 (1))
= ZheB_j wl (27" — ZheB_J w! (2%") = u? (2°7) — R(N) + R_;(N) = B;.
O

Proof of Theorem 5: Consider any time ¢ € Z,, any history profile {H,t;}he B, and
any realization {uh}he p of profile of utility functions of private information. Clearly, the
outcome of the game depends on the histories H,ﬁ for h € B and actions that bidders will
take in the continuation game starting from ¢. Note that bidders cannot change histories

but can influence the path of the future from # on. Take any player j € B. Suppose that in
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the continuation game from time ¢ on, every opponent h € B_; of player j bids sincerely

at any t € Z, (t > t) and in every market M_j, for k € By, namely,

oult, b HE) = B = D'ph(0) = arg_max {u(x) - (1))

It implies that for every bidder h € B_; in the markets M_; and M at every time t > ¢

Al(t)= min " 5"(t) =V (1) - VP (t+ 1))
zheBh(t)
and AY(t) = minme gh (g o sh(t) = VRpO(t) — VI(pO(t + 1)). However, the above
equations do not necessarily hold true for time ¢ < .

Clearly, in this continuation game from time ¢, when all opponents of player j choose
sincere bidding strategies, because of the option of walking away in Step 3, bidder j prefers
a strategy which causes the auction to stop at Step 3 and yields a nonnegative payoff to
him, to any other strategy which leads the auction to the broken down case and gives
him a strictly negative payoff of —¢ < 0. Therefore, it is sufficient to compare the sincere
bidding strategy with any other strategy which leads the auction to Step 3. Suppose that
ai( | f,k,Hf) (0} in short) for all k& € Bo \ {j} is such a continuation strategy of
player j resulting in an allocation (y®" h € B) in the market M, and that bidder j’s
(continuation) sincere bidding strategy results in an allocation (%", h € B) in the market
M by Theorem 3 in Section 4. Without any loss of generality, we assume that by the time
t, the auction has not found any allocation in the markets M and M_j, i.e., t < T70 and

t < T~J. When player j chooses the strategy 0}, his payment 3} given by (17) is

B = Thes, [(Ti0" A0 — L5 ALW) +adh - pi (T9) — o - p0(1°)]
= Yhen, (TS M0+ 5 AN - T AL - T A40)
+3hen, P (T7) = Ypep v 0O M(T)
= e, [Time A% + LT (VAGO®) — VEEO(E + 1))
— SIS AL - S V() - Vi + 1))
+ ZheB,j gdh i (T9) — ZheB,,- YO . O (T0)
= Tnen, (TIZOANE - A1)+ VhEOD) + V(I (T9) - VR (D))
+2nen_, wlh - pl (1) — (ZheB,j VI(T?)) + D ohen_ y*" 'pO(TO))
= Ty~ ZheB_j u"(y*"),

where I'_; is given by

Doy = e, [Zims(A%0) = AL®) + VhEOD) + V(! (T9)) = VA (1)
S i (T )} .
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Observe that I'_; is totally determined by the history profile {Hﬁ}he B and the market
M_; without bidder j, and does not depend on player j’s strategy J;». Similarly, we can
prove that if bidder j adopts the sincere bidding strategy, his payment Bj will be

Bj=T_;— Z ul(z0h).

heB_;

Moreover it follows from Theorem 3 in Section 4 that when bidders bid truthfully according
to their utility functions v, h € B, and Assumptions (A1) and (A2) are satisfied, the
allocation (7% h € B) in the market M found by the auction will be efficient. That is,

W (@) + 3T dl @) =)+ Y ).

heB_; heB_;

Taking the option of walking away into every bidder’s account together with the above
discussion gives the payoff 75]- of bidder j in the case of using the sincere bidding strategy

and his payoff 73]‘ in the case of using the strategy o} as follows

~

P; = max{u/ (z07) — ,é’j,()}
max{uj 207 — (r—; — ZheB_j Uh(xo’h))v 0}

)

(™)
max{u (2%9) + Ypep_ uh (@) ~T_;,0)

(y™)

(y™)

> max{ul (4"9) + Yyep u (™) ~T_;,0}
_ (20,5 _ Al _
= max{w’ (y° j,O}—Pj.
This demonstrates that every player’s sincere bidding strategy is indeed his ex post perfect

strategy. Therefore bidding sincerely by every bidder is an ex post perfect equilibrium.

O

Proof of Proposition 4: It follows from the proof of Theorem 4 that every bidder

j € B receives bundle 2%7 and pays fB; and his net profit equals

W (%) = 85 = R(N) = R_j(N) =Y ep, " (@) = Ypep_, u (@)
= Yhen, WM(@"") = Y pep, w (@) >0
where 277 = 0.
We now prove that the auction is also beneficial to the seller. First, consider the case
that u° is submodular. Recall that for every k € B, (z¥" h € B_}) is the equilibrium
allocation in market M_j found by the auction. By definition, it is easy to see that

R_j(N) = Z ut (2t > Z u (%) 4+ w0 (200 4 299).
heB—; heB\{j}
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The utility Py received by the seller equals

Po = (@) + 3585
= Yjen(W(@®) = BIN) + Rj(N)) = ¥ B-j(N) = (m — DR(N)

> Yjen (UO(fUO’O +2%7) + X ey Uh(xo’h)) — (m = 1)R(N)
ZJEB ul (200 4+ 299) — (m — D)u0(2%0).
Then submodularity implies that for every j =1,2,--- ,m — 1 we have
j ' j+1
uO(Z xD,h) + UO(LCO’O + xO,J—i-l) > uO(Z xO,h) + UD(:L'O’O).
h=0 h=0

Summing up these inequalities leads to

Z u® (220 + 2%9) > u¥( Z %) 4+ (m — 1)u’(2*0)

jEB Jj€Bo
from which we have

Po=> (@ +2%) — (m— D)u’(@"0) > u0( > 2%9) = u'(N).

jEB jE€By
So the utility the seller receives from trading is at least as good as she does not trade.
Second, consider the case that u° is superadditive. For every j € B we have

R_;(N) = Z ul (29 > Z ul (297 + a0 (200 + 299)

heB_; heB\{j}

and u0(z%0 + 209) > 10 (299) + u0(2%7). Then the utility Py received by the seller equals

Po = ud(2%0 + 2 ien B
= u(@"%) + X jeple! (2%) — R(N) + R_;(N))]

)
)
= W0@%) + e (w(2%9) = (0(00) + Lpep ut(2%4) + Ros(N))
= u0(@®0) + 3 cp[R-j(N) — (@) + Epep gy 0" ("))
= 0G0 + Y (ut)(;po,j) £ R(N) — (@) + u0(2%9) + Thep i uh($0,h))>
> u¥(@%0) + 325 plu® (@) + Roj(N) — (w0 + 2%7) + 3¢ py 5y W (a%))]
> u(@00) + e (0@%9) + R(N) = R5(N) ) = e, u(a%9).

This shows that the payment B}‘ received by the seller for every sold bundle 2% is at least

as big as its reserve price u®(2%7). We are done. a

Proof of Proposition 5: Because every bidder has the option of walking away in Step 3

and faces no punishment in Step 4, his final payoff cannot be negative if he is able to judge
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between positive and negative numbers, not necessarily acting optimally. Consequently,

the ICUD auction is ex post individually rational. O
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