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A Universally Efficient Dynamic Auction for All Unimodular Demand

Types

Satoru Fujishige∗ and Zaifu Yang†

Abstract: We propose a novel strategy-proof dynamic auction for efficiently

allocating heterogeneous indivisible commodities. The auction applies to all

unimodular demand types of Baldwin and Klemperer’s necessary and sufficient

condition for the existence of competitive equilibrium which accommodate a va-

riety of complements, substitutes, gross substitutes and complements, and any

other kinds. Although bidders are not assumed to be price-takers so they can

act strategically, this auction induces bidders to bid truthfully, yielding efficient

outcomes. Sincere bidding is shown to be an ex post perfect Nash equilibrium

of the auction. The trading rules are simple, detail-free, privacy-preserving,

error-tolerant, and independent of any probability distribution assumption.

Keywords: Dynamic Auction Design, Equilibrium, Incentive Compatibility, Uni-

modular Demand Types, Indivisibility, Incomplete Information.

MSC: 91B26, 91A27, 91B50, 91A10.

1 Introduction

This paper offers a general, efficient, and strategy-proof dynamic design for auctioning

a wide variety of heterogeneous indivisible commodities/items to many bidders. Every

bidder has a private valuation on every of his interested bundles of items, may demand

any number of items and act strategically rather than truthfully. A consequence of our

design resolves an important issue concerning complements raised by Milgrom (2017, p.45),

who says: “Markets for complements can be much harder than markets for substitutes

and can require greater planning and coordination.”1

∗S. Fujishige, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan,

fujishig@kurims.kyoto-u.ac.jp.
†Z. Yang, Department of Economics and Related Studies, University of York, York YO10 5DD, UK,

zaifu.yang@york.ac.uk.
1This echoes Milgrom (2000, 2004), Jehiel and Moldovanu (2003), Noussair (2003), Porter et al. (2003),

and Maskin (2005) on the same issue.
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In dynamic auction design, prices play an instrumental rule in guiding the market to-

ward a competitive equilibrium. In this paper, we use the standard notion of competitive

equilibrium. The pricing rule is anonymous and linear for all agents. This rule is common,

easy, and practical. Our dynamic auction design applies to all unimodular demand types

of Baldwin and Klemperer (2019) which are a necessary and sufficient condition for the

existence of competitive equilibrium regardless of whether the commodities are comple-

ments, (gross) substitutes (GS), gross substitutes and complements (GSC), or any other

kinds. Unimodular demand types are rich, unify existing sufficient conditions2 and can

also identify previously-unknown environments in which a competitive equilibrium still

exists. Baldwin and Klemperer (2014, 2019) have also shown that there are far more

classes of complements than of substitutes for equilibrium existence.

While Baldwin and Klemperer (2019) have established this important equilibrium ex-

istence theorem via a nonconstructive method in an equilibrium model with price-taking

agents and complete information, this article addresses a related, but distinct, fundamental

problem of how competitive equilibrium prices can be formed and found and efficient allo-

cations can be identified in an incomplete information environment with strategic bidders.

We propose a dynamic auction and show that sincere bidding is an ex post perfect Nash

equilibrium of the auction game of incomplete information and the auction yields a com-

petitive outcome. Our auction is the first efficient and strategy-proof dynamic mechanism

under the necessary and sufficient condition of Baldwin and Klemperer (2019).

Besides, we shall also highlight two other major contributions of this paper. First,

a salient feature of our auction design is a new concept of “a search set,” which makes

our approach universal, not ad hoc. Our auction converges globally for every unimodular

demand type from any starting point to a competitive equilibrium. Our approach is novel,

combinatorial, general, employing only convexity and unimodularity. It goes beyond the

conventional ones which use the familiar property of submodularity; see e.g., Gul and

Stacchetti (2000) and Ausubel (2006). Submodularity indeed holds for (gross) substitutes

but, in general, does not hold for other demand types. Our auction provides also an inno-

vative algorithm for solving a class of general constrained discrete optimization problems

2Earlier existence results include Koopmans and Beckmann (1957), Shapley and Shubik (1971), Kelso

and Crawford (1982), Gul and Stacchetti (1999), Danilov et al. (2001), Sun and Yang (2006), Crawford

(2008), Milgrom and Strulovici (2009), Hatfield et al. (2013), and Shioura and Yang (2015).

2



in which functions are not given explicitly. This is in marked contrast to the literature

in which functions are given explicitly and algorithms work directly on the functions; see

e.g., Murota (2003), Fujishige (2005), Lee and Leyffer (2012). Furthermore, we prove

that the set of competitive equilibrium price vectors in our market exhibits a striking ge-

ometric structure being an integral polytope, sharpening and extending the lattice results

obtained by Shapley and Shubik (1971), Gul and Stacchetti (1999) and Ausubel (2006)

for substitutes. A lattice is not necessarily a polytope.

Second, it is well-recognized that strategy-proof dynamic mechanisms have important

advantages over strategy-proof direct/static mechanisms in their capacity of alleviating

bidders’ concern about privacy and reducing computational complexity, payoff uncer-

tainty and information cost; see e.g., Rothkopf et al. (1990), McMillan (1994), Ausubel

(2004, 2006), Ausubel and Milgrom (2005), Perry and Reny (2005), Bergemann and Mor-

ris (2007), Rothkopf (2007), and Milgrom (2007, 2017). Besides, possessing such desirable

properties, the current auction can tolerate various dishonest behaviors and mistakes made

by bidders and allow them to learn, adjust, and correct. Unlike the conventional approach

of a huge penalty for violation, we adopt a lenient policy and show that no bidder will

end up with a negative payoff as long as he can differentiate a positive number from a

negative one, no matter how his competitors bid. The current auction is independent of

any probability distribution assumption, detail-free, and robust against any regret and

needs only a minimal common knowledge assumption that the unimodular demand type

of commodities is known. This is desirable and important; see Wilson (1987).

The rest of this article goes as follows. The auction model is introduced in Section 2.

The structure of the set of competitive equilibria and other properties of the model are

explored in Section 3. The basic dynamic auction design and convergence are discussed

in Section 4. The strategy-proof dynamic auction built upon the basic dynamic auction

and its strategic properties are examined in Section 5.

1.1 A Brief Literature Review

Most dynamic auctions were designed for (gross) substitutes—the benchmark condition in-

troduced by Kelso and Crawford (1982). These include Crawford and Knoer (1981), Kelso

and Crawford (1982), Demange et al. (1986), Gul and Stacchetti (2000), Milgrom (2000),

Ausubel (2004, 2006), Hatfield and Milgrom (2005), Milgrom and Strulovici (2009), and
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Murota et al. (2016), etc. Among these, sincere bidding is an ex post Nash equilibrium for

the assignment market (see e.g., Demange et al. 1986 and Andersson and Svensson 2016),

and an ex post perfect Nash equilibrium for those of Ausubel (2004, 2006). In contrast,

there are only very few results concerning complements; see Sun and Yang (2009) for a

dynamic auction for gross substitutes and complements and Candogan et al. (2015) for

an iterative auction for tree valuations exhibiting substitutes and complements. These

papers and the current paper all use anonymous and linear pricing rules. Sun and Yang

(2014) proposed a strategy-proof dynamic auction for multiple complements using anony-

mous and nonlinear pricing. Furthermore, discriminatory and nonlinear pricing rules are

applied to package auctions; see Ausubel and Milgrom (2002), Mishra and Parkes (2007),

and De Vries et al. (2007) for ascending auctions. These pricing rules are so general that

they can charge people differently for the same bundle of goods and offer solutions for

markets lacking competitive equilibrium. However, anonymous and linear pricing rules

have distinct advantages over these rules so are more commonly used in both theory and

practice.

In the traditional analyses, it has been essential to assume that agents are price-takers

or have no market power at all (see Debreu and Scarf 1963, Aumann 1964, and Arrow

and Hahn 1971). Unfortunately, this assumption can hardly be satisfied in any real life

auction, as the number of bidders is usually small and bidders do possess considerable

market power so it is inconceivable that they would not bid strategically if it were in

their interests to do so. See Kojima and Pathak (2009) for a discussion on large markets.

Our paper aims to provide an efficient and strategy-proof dynamic auction mechanism for

general markets where no one has all information but every bidder possesses some private

information and may act strategically. See Hayek (1945) and Hurwicz (1971) on such

fundamental issues.

2 The Model

An auctioneer or a seller wants to sell a set N = {1, 2, · · · , n} of n indivisible items to a

group B of m potential bidders. Some of the items can be heterogeneous and the other can

be identical. Identical items will be labelled differently. This way of treating indivisible

items in a competitive equilibrium model causes no loss of generality as identical units of
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the same commodity can be treated as different items but will have the same equilibrium

price. Let IRN denote the n-dimensional Euclidean space, where each coordinate is indexed

by a number from the set N . Let ZN stand for the set of all integer vectors in IRN . For

every i ∈ N , let e(i) denote the ith unit vector in IRN . A subset S of N represents a

bundle of items in S. For easy exposition, we regard a set S and the corresponding vector∑
i∈S e(i) as the same bundle.

Every bidder (he) j ∈ B has a utility function uj : {0, 1}N → Z∪ {−∞} specifying his

valuation uj(x) (in units of money, say, in dollars) on every bundle x, where {0, 1}N denotes

the set of all bundles of items. The seller (she) denoted by 0 has a reserve price function

u0 : {0, 1}N → Z∪{−∞}. Let B0 = B∪{0} stand for the set of all market participants (all

bidders and the seller). In general, when we talk about a generic agent who can be a bidder

or the seller, we treat the agent as female. Let dom(uj) = {x ∈ {0, 1}N | uj(x) > −∞}

denote the effective domain of uj for every agent j ∈ B0. A bundle x is unacceptable to

an agent j ∈ B0 if and only if uj(x) = −∞, i.e., x /∈ dom(uj).

All agents have quasi-linear utilities in money. That is, every agent j′s utility over any

bundle x and any amount c of money can be written as U j(x, c) = uj(x) + c for j ∈ B0.

Every agent has a limited but enough amount of budget so that she does not face any

budget constraint (No Budget Constraint Condition). Note that when a commodity is

sold with a negative price, this means that the commodity can be bad and the seller will

pay the price. So our model can accommodate indivisible goods as well as bads. We use

M = (uj , j ∈ B0, N) or simply M to represent the market. A submarket is what is left

in the market M by deleting a number of bidders and a number of items.

An allocation of items in N is a redistribution X = (xj , j ∈ B0) of items among

all market participants in B0 such that
∑

j∈B0
xj =

∑
i∈N e(i) and xj ∈ {0, 1}N for all

j ∈ B0. At allocation X, agent j ∈ B0 receives bundle xj . An allocation X = (xj , j ∈ B0)

is feasible if xj ∈ dom(uj) for every agent j ∈ B ∪ {0}. We assume that the market has

at least one feasible allocation (Feasibility Condition). This is a general and minimal

assumption, meaning that every item can be acceptable to some agents in some ways

and every agent has at least one acceptable bundle.3 An allocation X = (xj , j ∈ B0) is

3The following market trivially satisfies this assumption. The set dom(uj) of every bidder j ∈ B

contains at least one nonzero vector and also the dummy bundle 0 with uj(0) = 0. So every bidder has

the option of buying nothing and is interested in buying some items. The set dom(u0) of the seller equals

{0, 1}N with u0(0) = 0. This means that the seller will not sell but retain a bundle if the price of the
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efficient if
∑

j∈B0
uj(xj) ≥

∑
j∈B0

uj(yj) for every allocation Y = (yj , j ∈ B0). Given

an efficient allocation X, let R(N) =
∑

j∈B0
uj(xj). We call R(N) the market value of the

items which is the same for all efficient allocations. Clearly, an efficient allocation must

be feasible.

An n-vector p = (p1, · · · , pn) ∈ IRN specifies a price pi for every item i ∈ N and is

the same for all bidders. This is an anonymous and linear pricing rule, which is easy and

practical and has long and widely being used in theory and practice. Every bidder j ∈ B

maximizes his profit and his demand set Dj(p) is given by

Dj(p) = argmaxx∈{0,1}N {uj(x)− p · x}, (1)

where p · x =
∑

i∈N pixi. At prices p ∈ IRN , the seller chooses bundles to maximize her

revenues and her demand set D0(p) is given by

D0(p) = argmaxx∈{0,1}N {u0(x)− p · x+
∑

i∈N pi}

= argmaxx∈{0,1}N {u0(x)− p · x}.

The set D0(p) contains those bundles that the seller wishes to keep in hand and give her

the highest revenues. Although the seller has a different objective from the bidders, her

revenue-maximizing behavior is similar to a bidder’s profit-maximizing behavior. Observe

that if x ∈ D0(p) at prices p, the seller will retain the bundle x and sell all other items by

receiving the payment of p · (
∑

i∈N e(i)− x) =
∑

i∈N pi − p · x.

Definition 1 (Competitive or Walrasian Equilibrium) A competitive or Walrasian equi-

librium (p,X) consists of a price vector p ∈ IRN
+ and an allocation X such that xj ∈ Dj(p)

for every j ∈ B0.

If (p,X) is a competitive equilibrium, we call p an equilibrium price vector and X an

equilibrium allocation. We say that X is supported by p. It is well-known from the first

welfare theorem that every equilibrium allocation is efficient.

Baldwin and Klemperer (2019) have recently proposed a powerful necessary and suffi-

cient condition for the existence of competitive equilibrium in an exchange economy with

indivisible commodities, which will be used in our auction. Their condition (i.e. (A2)

below) covers and generalizes many previous conditions including the widely-used gross

substitutes condition of Kelso and Crawford (1982).

bundle is below her reserve price, and she will keep any bundle of her own items if the bundle is not sold.
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Let ♯A denote the cardinality of any given finite set A. The dimension of any given

set A ⊂ IRN is understood as the dimension of the affine span of A. With respect to any

given utility function u : S → IR ∪ {−∞} with a finite set S ⊂ ZN and ♯dom(u) > 1, let

the demand set at a price vector p ∈ IRN be given by

Du(p) = argmax
x∈S

{u(x)− p · x}.

Note that the domain S of the function u is very general, not restricted to the set {0, 1}N .

Following Baldwin and Klemperer (2019), we introduce the locus of indifference prices,

demand type and unimodular demand type. We say that the set

Tu = {p ∈ IRN | ♯Du(p) > 1}

is the locus of indifference prices (LIP) of the demand mapping Du. This set Tu concerns

those price vectors p at which there are at least two optimal bundles for any agent who

has the utility function u. LIP contains the only prices at which demand can change in

response to a price change, and is the union of (n−1)-dimensional polyhedral pieces called

facets(a facet of a polyhedron of dimension n is a face that has dimension n − 1). These

facets separate the unique demand regions, in each of which some bundle is the unique

demand; see Baldwin and Klemperer (2019, Prop. 2.4). The normal vector to a facet F is

a vector which is perpendicular to F at a point in its relative interior. A non-zero integer

vector is primitive if the greatest common divisor of its coordinates is one.

Definition 2 (Demand Type) A finite set D of primitive vectors in ZN is a demand type

of function u if v ∈ D implies −v ∈ D and every facet of the LIP Tu has its normal vector

in D.

By definition, a demand type may contain vectors which are not a normal vector of any

facet of LIP Tu.

A square matrix is unimodular if all its elements are integral and its determinant is

+1 or −1. A matrix M is totally unimodular if every minor of M is 0 or ±1. A set of n

integer vectors in IRN is a unimodular basis for IRN if the n × n matrix which has the n

integer vectors as its columns is unimodular.

Definition 3 (Unimodular Demand Type) A demand type D is unimodular if every lin-

early independent subset of D can be extended to a unimodular basis for IRN .
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For a unimodular demand type D, additional vectors required to form a unimodular basis

are possibly chosen from outside D. Note that unimodular demand types are derived from

utility functions and given as sets of integer vectors associated with unimodular matrices.

These demand types capture the essential and natural attributes of the commodities but do

not reveal the values of the consumers. For instance, consumers view tables as something

sharing the same physical property but they can each have different valuations on tables.

Proposition 1 Every unimodular demand type can be added with less than n new vectors

so that the enlarged set is still a unimodular demand type and contains at least one basis.

This new and basic property of unimodular demand types is used in our auction design

by naturally assuming that every given unimodular demand type spans the space IRN . As

the concept of demand type is quite new, we give an example to illustrate it.

Example 1 There is a market where the seller wishes to sell two items a and b to three

bidders. Every agent knows her values privately. We consider two possibilities. Case 1:

Both items are substitutes. Agents’ valuations are given in Table 1. Case 2: Both items

are complements. Agents’ valuations are given in Table 2.

Table 1: The case of substitutes.

Agents\Bundles ∅ a b ab

Bidder 1 0 3 4 5

Bidder 2 0 5 2 6

Bidder 3 0 3 3 4

Seller 0 2 2 3

Table 2: The case of complements.

Agents\Bundles ∅ a b ab

Bidder 1 0 2 2 5

Bidder 2 0 2 2 5

Bidder 3 0 1 1 4

Seller 0 1 1 3

For this example, in the case of substitutes, all agents have the same unimodular demand

type D = {±(1, 0),±(0, 1),±(1,−1)}. The locus of indifference prices of bidder 1 is shown

in Figure 1. In the case of complements, all agents have the same unimodular demand

type D = {±(1, 0),±(0, 1),±(1, 1)}. The locus of indifference prices of bidder 1 is shown

in Figure 2. In the two figures, (1, 0) stands for item a, (0, 1) for item b and (1, 1) for two

items ab, and the normal vector of every facet of the LIP Tu1 is the dashed line.

The following two assumptions are imposed on our auction model M:
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1 2 3 4 5

1

2

3

4

5

pb

pa

(0, 0) demanded

(0, 1) demanded

(1, 0) demanded

(1, 1) demanded
±(−1, 1) normal vectors

±(1, 0) normal vectors

±(0, 1) normal vectors

Figure 1: u1(0, 0) = 0, u1(1, 0) = 3, u1(0, 1) = 4, and u1(1, 1) = 5. The five connected lines denote LIP.

(A1) Integer Private Values: Every agent j ∈ B0 knows her own utility function uj :

{0, 1}N → Z ∪ {−∞} privately.

(A2) Common Unimodular Demand Type: All agents j ∈ B0 have the same unimodular

demand type D for their utility functions uj .

Assumption (A1) means that every agent treats her valuation as her private, personal

information. The integer-valued assumption is a standard and natural one, as people

valuate the bundles of goods in units of currency, say, in dollars, which cannot be closer to

the nearest penny. As every agent’s utility function is assumed to be private information,

this means that the agent possessing this information can make use of it in a way it is

in her best interest. However, it is typically assumed that the seller acts truthfully while

bidders may behave strategically (see e.g., Ausubel 2004, 2006 and Perry and Reny 2005),

because it is well-known from Myerson and Satterthwaite (1983) that even in a simple

bilateral trading model with one seller, one buyer and one item, it is impossible to achieve

efficiency, individual rationality and strategy-proofness for both the seller and the buyer;

see also Krishna (2002). Unlike many previous models, we allow the seller to have her

personal reserve price function u0. This makes the model more realistic and practical.

Assumption (A2) can be alternatively stated as the union of the demand types of all

agents j ∈ B0 is a unimodular demand type. This assumption says that agents may have

quite different valuations on every bundle of items but they all have the same demand
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1 2 3 4 5

1

2

3

4

5

pb

pa

(0, 0) demanded

(0, 1) demanded

(1, 0) demanded

(1, 1) demanded

±(1, 1) normal vectors

±(1, 0) normal vectors

±(0, 1) normal vectors

Figure 2: u1(0, 0) = 0, u1(1, 0) = u1(0, 1) = 2, and u1(1, 1) = 5. The five connected lines denote LIP.

type, which captures the quintessence of the items.4 It is a test condition imposed upon

every individual agent, which is neat and easy to check compared with the earlier necessary

and sufficient conditions introduced by Bikhchandani and Mamer (1997), Ma (1998), Sun

and Yang (2002), and Yang (2003) which are given as aggregated conditions on the entire

market. Unimodular demand types are numerous. Note that for the market described in

Footnote 3, Assumption (A2) and dom(u0) = {0, 1}N imply that the unimodular demand

type D shared by all agents is totally unimodular as it contains all unit vectors e(i), i ∈ N .

We now briefly discuss three typical and important classes of unimodular demand types

given by Baldwin and Klemperer (2019). Note that besides these three classes there are

numerous other classes of demand types which remain to be explored.

Definition 4 (Gross Substitutes) A demand type D is gross substitutes (GS) or simply

substitutes if every vector x ∈ D has at most one 1 entry and at most one −1 entry and

no other nonzero entries.

This definition captures the gross substitutes or simply substitutes condition of Kelso and

4Baldwin and Klemperer (2019, Theorem 4.3) have shown in a nonconstructive way by tropical geom-

etry and convex analysis that Assumption (A2) is a necessary and sufficient condition for the existence

of competitive equilibrium without requiring integral valuations whose equilibrium prices can be any real

numbers so may not be integral. Tran and Yu (2019) proposed an alternative proof of Theorem 4.3 of

Baldwin and Klemperer through the linear programming approach and a sealed-bid product-mix auction.

Baldwin et al. (2020) examined a general model with income effects.
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Crawford (1982) on the demand behavior. See Gul and Stacchetti (1999, 2000), Fujishige

and Yang (2003), Hatfield and Milgrom (2005), Ausubel (2006), Milgrom and Strulovici

(2009), Shioura and Tamura (2015), Murota et al. (2016) for various results on substitutes.

Definition 5 (Gross Substitutes and Complements) Assume that S1 and S2 are disjoint

subsets of N and their union equals N . A demand type D is gross substitutes and com-

plements (GSC) if every vector x ∈ D has at most two nonzero entries of +1 or −1 and

no other nonzero entries so that if two nonzero entries of x have the same sign, then one

nonzero component must be indexed by an element in S1 and the other must be indexed

by an element in S2.

GSC says that items in either S1 or S2 are substitutes but items across the two sets

are complementary. Observe when either S1 or S2 becomes empty, GSC coincides with GS

and thus generalizes GS. This condition corresponds to the one in Sun and Yang (2006,

2009) as a generalization of gross substitutes. See also Shioura and Yang (2015).

Definition 6 (Unimodular Complements) A demand type D is unimodular complements

if x ∈ D implies either x ∈ {0, 1}N or x ∈ {0,−1}N and D is unimodular.

A basis change is called a unimodular transformation if we have y = Ax for every x ∈ IRN

and A is a unimodular matrix of order n. Baldwin and Klemperer (2019, Prop. 6.2; 2014,

Theorem 5.27) have shown that every unimodular demand type is a unimodular trans-

formation of some unimodular complements demand type. This means that unimodular

complements demand types are so rich that any other unimodular demand type can be

obtained from them. It is known that the gross substitutes condition is the most general

representation of substitutability for equilibrium; see Gul and Stacchetti (1999, Theo-

rem 2, p. 103). However, we cannot have a similar statement for complements, because

unimodular complements demand types are numerous and varied and there is no unique

maximal unimodular complements demand type.

In the literature, we have a far better understanding of substitutes than of comple-

ments. Levin (1997) introduced an optimal sealed-bid auction for two complementary

items, extending the auction of Myerson (1981) for a single item. Sun and Yang (2014)

proposed a dynamic auction for multiple complements that satisfy super-additivity. Their

model does not guarantee the existence of competitive equilibrium (with linear pricing) so
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anonymous and nonlinear pricing has to be used. In this case the complements demand

type is not unimodular.

3 On the Structure of Competitive Equilibria

In this section we present several basic results which will play an important role in our

auction design and analysis.5 These results are also interesting on their own right, intuitive,

and economically meaningful.

We first introduce several mathematical concepts. Other concepts can be found in the

appendix. A set S ⊆ IRN is a polyhedron if S = {x ∈ IRN | Ax ≤ b} for some m×n matrix

A and an m-vector b. A bounded polyhedron is called a polytope. A polyhedron S ⊆ IRN

having at least one vertex is integral if all its vertices are integral. The Minkowski sum of

any two sets S and T in IRN is defined as S + T = {x + y | x ∈ S, y ∈ T}. Given any

x, y ∈ IRN , define their meet x ∧ y as the componentwise minimum of x and y and join

x ∨ y as the componentwise maximum of x and y. A set S ⊂ IRN is a lattice if x ∧ y ∈ S

and x∨y ∈ S for any x, y ∈ S. A polyhedron is called a polyhedron with a lattice structure

if it is also a lattice. It is known that a lattice is not necessarily a polyhedron. A function

f defined on a convex set S in IRN is called a polyhedral convex function if it is given as

f(x) = max{Bj · x+ cj | j = 1, · · · , k} (x ∈ S),

where Bj is an n-vector and cj is a constant, j = 1, · · · , k for a given positive integer k.

Let us turn to our auction model. For every agent j ∈ B0, define her indirect utility

function V j : IRN → IR by

V j(p) = max
x∈{0,1}N

{uj(x)− p · x} (2)

and, for the market model, define the Lyapunov function L : IRN → IR by

L(p) =
∑
i∈N

pi +
∑
j∈B0

V j(p) (3)

where V j is the indirect utility function of agent j ∈ B0. This type of function is well-

known in the literature for economies with divisible goods (see e.g., Arrow and Hahn 1971

5Precisely, they are crucial to the analysis of the convergence and other properties of our dynamic

auctions in Sections 4 and 5. The description of the auctions, however, dose not depend on this section.
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and Varian 1981) and has been explored by Ausubel (2006) and Sun and Yang (2009) for

auction markets with indivisible goods. We have the following two basic results.

Lemma 1 For any given function f : S → IR with a nonempty finite set S ⊂ ZN , the

function g : IRN → IR defined by g(p) = maxx∈S{f(x) − p · x} for every p ∈ IRN is a

decreasing polyhedral convex function.

Lemma 2 For the market model, the Lyapunov function L defined by (3) is a polyhedral

convex function bounded from below.

The above two lemmas are very general and do not depend on any particular assump-

tions such as Assumptions (A1) and (A2). Proposition 1 of Ausubel (2006) and Lemma 1

of Sun and Yang (2009) imply that p ∈ IRN is an equilibrium price vector if and only if it

is a minimizer of the Lyapunov function L provided that the market has an equilibrium.

To study the collective behavior of all agents j ∈ B0, we consider the convolution u of

their utility functions uj given by

u(x) = max{
∑
j∈B0

uj(yj) | x =
∑
j∈B0

yj where yj ∈ {0, 1}N for every j ∈ B0} (4)

for every x ∈ {0, 1, · · · ,m+1}N . This function is closely related to the Lyapunov function

L. For all p ∈ IRN and all xj ∈ Dj(p) of agents j ∈ B0, define

g(x) =
∑
j∈B0

uj(xj) where x =
∑
j∈B0

xj . (5)

From all demand sets Dj(p) we obtain the following demand set of Minkowski sum

DMs(p) = D0(p) +D1(p) + · · ·+Dm(p). (6)

When an agent’s demand type D with respect to utility function u is unimodular, we

say that the agent has a UDT D utility function u. The following two results demonstrate

several basic properties of the function g of (5) and the Minkowski sum DMs of (6),

playing an important role in our auction analysis. Related to our Lemma 4 is Corollary

3.14 of Baldwin and Klemperer (2019, p. 886).

Lemma 3 For any integer-valued UDT D utility function u : S → Z∪{−∞} with a finite

set S ⊂ ZN and ♯dom(u) > 1, if the convex hull of the demand set Du(p) for a price vector

p is full-dimensional, the price vector p must be integral and unique.
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Lemma 4 Under Assumptions (A1) and (A2), the function g of (5) is well-defined,

coinciding with the convolution function u of (4) and being discrete concave with the

unimodular demand type D. In particular, the Minkowski sum DMs(p) of (6) is the

demand set for valuation g = u and has the same unimodular demand type D.

We are ready to establish our first major result on the set of competitive equilibrium

price vectors, which exhibits an elegant geometric structure, extending and sharpening

the classic lattice results of Shapley and Shubik (1971) on assignment models, Gul and

Stacchetti (1999) and Ausubel (2006) on gross substitutes models. This theorem ensures

that our proposed auction will terminate with an integer equilibrium price vector no matter

which integer vector it starts with (see Theorem 3 in Section 4).

Theorem 1 Under Assumptions (A1) and (A2), the set of competitive equilibrium price

vectors forms a nonempty integral polytope.

For gross substitutes, we can show that the set of competitive equilibrium price vectors

forms a nonempty integral polytope with a lattice structure.

4 Basic Dynamic Auction Design

In this section we consider the basic case that bidders bid straightforwardly as price-

takers. We propose a universally convergent dynamic (UCD) auction that applies to all

unimodular demand types. This section prepares us to deal with a more natural and

more realistic situation in Section 5 where bidders have market power, may therefore

act strategically rather than sincerely as price-takers, and may also occasionally make

mistakes. Based on the UCD auction we will introduce in Section 5 an efficient and

strategy-proof dynamic auction that allows bidders to learn, adjust, and correct.

In a dynamic auction, at each time t ∈ Z+, the auctioneer announces a price for every

item and then every bidder chooses a bid. We introduce the concept of sincere bidding.

Definition 7 (Sincere Bidding) Agent j ∈ B0 bids sincerely with respect to her util-

ity function uj if she always submits a bid Bj(t) equal to her demand set Dj(p(t)) =

argmaxx∈{0,1}N {uj(x)− p(t) · x} at every time t ∈ Z+ and any price vector p(t) ∈ IRN .

Roughly speaking, our universally convergent dynamic auction works as follows: At

each time t ∈ Z+, the auctioneer announces the current prices p(t) ∈ Zn and every bidder
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j responds by reporting his demand Dj(p(t)). Then she uses every bidder’s reported

demand Dj(p(t)) to search for a price adjustment δ in a neighborhood of prices p(t) in

order to update the current prices. To do so, she tries to reduce the value of the Lyapunov

function L(p(t) + δ) as much as possible, until a minimizer of the Lyapunov function, i.e.,

a competitive equilibrium price vector, is found.

We now introduce the concept of a search set which is a key building block of our

auction design and gives an appropriate neighborhood of the current prices for price ad-

justment. The search set is defined with respect to any demand type D as given in

Assumption (A2).

Definition 8 (Search Set) For any given demand type D, its search set denoted by SD

is the collection of the zero vector and all nonzero primitive integer vectors δ ∈ ZN such

that we have δ · dj = 0 for some n− 1 linearly independent vectors d1, · · · , dn−1 ∈ D.

One may view the search set as a family of the zero vector and all nonzero primitive integer

vectors δ ∈ ZN such that δ is a normal vector of a facet of a full-dimensional convex hull of

a demand set at some price vector p. The search set is a spanning set of IRN , can be easily

obtained from any given demand type and varies from one demand type to another. It

applies universally to all kinds of commodities regardless of whether they are substitutes

or complements or anything else. The search set SD will be used as a litmus test of

optimality and for local searches. More precisely, it will be shown that p(t) ∈ ZN is a

minimizer of the Lyapunov function L if and only if L(p(t)) ≤ L(p(t) + δ) for all δ ∈ SD,

and that if p(t) ∈ ZN is not a minimizer of L, we must have L(p(t)) > L(p(t)+δ) for some

δ ∈ SD. These properties play a pivotal role in our basic dynamic auction design.

It will be helpful to use the simple case of complements in Example 1 to illustrate why

a typical multi-item ascending/English auction can be plagued by the exposure problem

and how our new auction overcomes the problem and succeeds in finding a competitive

equilibrium. Let us first see how a multi-item English auction would operate. The seller

initially announces low prices p(0) = (pa(0), pb(0)) = (0, 0). Clearly, every agent demands

the two items. As the bundle ab is overdemanded, the auction will raise the two prices

simultaneously, say each by one unit, an integer increment as a typical English auction

does. The price vector is updated to p(1) = (1, 1). At p(1), ab is still overdemanded and

the prices are raised up to p(2) = (2, 2). At p(2), ab is still overdemanded and the price
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is updated to p(3) = (3, 3). At p(3) no bidder wants to demand any item and the auction

has stuck in a non-equilibrium state. This phenomenon is called the exposure problem;

see e.g., Milgrom (2000).

Now we will see how our basic auction resolves the exposure problem. As it will

be shown below, at any time t ∈ Z+, in order to reduce the value of the Lyapunov

function, the auctioneer/seller just needs to adjust the current prices p(t) to the next

prices p(t + 1) = p(t) + δ(t) by finding an optimal search direction δ(t) to the following

problem until the vector of zeros becomes an optimal solution:

max
δ∈SD

{
∑
j∈B0

min
xj∈Dj(p(t))

xj · δ −
∑
i∈N

δi} (7)

This example has the demand type D = {±(1, 0),±(0, 1),±(1, 1)} and its search set

SD = {(0, 0),±(1, 0),±(0, 1),±(1,−1)}. Starting with p(0) = (pa(0), pb(0)) = (0, 0),

the auctioneer updates prices p(t+ 1) = p(t) + δ(t) according to (7). At p(0), the bundle

ab is demanded by every agent. In this case, there are two optimal adjustments (1, 0) and

(0, 1) and we can choose either of the two. The auction process is shown in Table 3. The

auction stops at p(5) = (3, 2) and finds a Walrasian equilibrium in which ab is allocated to

bidder 1 or 2 who pays 5 in return, and other bidders get nothing and pay nothing. Note

that the auction can also stop at (2, 3) if one chooses δ(4) = (0, 1) at p(4) = (2, 2).

Table 3: Illustration of the New Basic Auction.

time t prices p(t) δ(t) D0(p(t)) D1(p(t)) = D2(p(t)) D3(p(t))

0 (0, 0) (1, 0) {ab} {ab} {ab}

1 (1, 0) (0, 1) {ab} {ab} {ab}

2 (1, 1) (1, 0) {ab} {ab} {ab}

3 (2, 1) (0, 1) {ab, b, ∅} {ab} {ab}

4 (2, 2) (1, 0) {∅} {ab} {ab, ∅}

5 (3, 2) (0, 0) {∅} {ab, b, ∅} {∅}

The underlying principle of our auction is to find a minimizer of the nonlinear Lyapunov

function L, although we will not be able to use the function L directly, because the

utility function of every bidder is private information and unavailable to the auctioneer.
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Moreover, because the function L is nonlinear, we cannot reach any of its minimizers

in one step but have to do it iteratively by local search. Before discussing our dynamic

auction in detail, we first give the blueprint for our auction design:

• First, at current prices p(t) ∈ ZN for time t ∈ Z+, the auctioneer searches locally

for a price adjustment δ(t) in the convex hull Conv(SD) of the search set SD to

reduce the value of the Lyapunov function L as much as possible from L(p(t)) to

L(p(t) + δ(t)). We will show that this local search can be done over the much easier

finite set SD instead of over the complicated, dense and infinite set Conv(SD).

• Second, we will show that based on every bidder j’s reported demand set Dj(p(t))

at prices p(t), the auctioneer’s solving the unobservable maximization problem of

L(p(t))− L(p(t) + δ(t)) over the search set SD amounts to solving the much easier

observable problem (7). This process will be repeated until a minimizer of the

Lyapunov function, i.e., a competitive equilibrium price vector, is found.

Our auction can be seen as a substantial generalization of those of Demange et al. (1986),

Gul and Stacchetti (2000), and Ausubel (2006) from gross substitutes to all unimodular

demand types and is particularly close to Ausubel’s auction (2006, pp. 618-619). However,

we cannot generalize or use their arguments directly but have to explore quite different

and general techniques that apply to all unimodular demand types. The following lemma

will be used to show a crucial result, Proposition 2 given below.

Lemma 5 Let SD be the search set of a unimodular demand type D and δ ∈ SD be a

primitive normal vector of an (n− 1)-dimensional space spanned by d1, · · · , dn−1 ∈ D. If

d1, · · · , dn−1, dn ∈ D form a basis, we have α|δ · dn| = 1 for some α ≥ 1.

The next proposition concerning the Lyapunov function shows that the nonlinear op-

timization problem (8) over the convex hull of the finite search set is equivalent to the

nonlinear optimization problem (8) over the finite search set. This implies that when the

auctioneer tries to adjust prices, she just needs to focus on the few choices in the search

set SD rather than gropes around the entire convex hull of the search set SD.

Proposition 2 Under Assumptions (A1) and (A2), for any p(t) ∈ ZN we have

max
δ∈Conv(SD)

{L(p(t))− L(p(t) + δ)} = max
δ∈SD

{L(p(t))− L(p(t) + δ)}. (8)
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From the above result and its proof (given in the Appendix), we immediately have

two corollaries. The first says that the optimal solutions of the constrained nonlinear

optimization problem (8) exist and correspond to the vertices of the set of all optimal

solutions. The second roughly says that if we can change prices slightly, the demand set

of every bidder will not change.

Corollary 1 Under Assumptions (A1) and (A2), the set of solutions to the left-side prob-

lem of (8) is a nonempty integral polytope.

Corollary 2 Under Assumptions (A1) and (A2), then for any j ∈ B0, any p ∈ ZN , and

any δ ∈ SD, we have Dj(p + εδ) ⊆ Dj(p) for all ε ∈ [0, 1) and xj ∈ argminx∈Dj(p) x · δ

lies in Dj(p+ εδ) for all ε ∈ [0, 1].

Corollary 2 substantially generalizes Proposition 2 of Ausubel (2006) on gross substitutes

to all unimodular demand types.

The following result gives a powerful local characterization of optimality or competitive

equilibrium price vectors, saying that the search set SD is a simple test set for verifying

whether a point is a minimizer of the Lyapunov function L or not. Recall that because the

set of competitive equilibrium price vectors in our auction market is a nonempty integral

polytope by Theorem 1, an n-vector p∗ is a competitive equilibrium price vector if and

only if it is a minimizer of the Lyapunov function L.

Theorem 2 Under Assumptions (A1) and (A2), p∗ ∈ ZN is a minimizer of the Lyapunov

function L in (3) if and only if L(p∗) ≤ L(p∗ + δ) for all δ ∈ SD.

Finding an optimal solution of a nonlinear problem usually cannot be done in one

step but requires multiple successive local searches. Our next corollary says that if the

minimum of the nonlinear Lyapunov function L has not been reached, one can further

reduce the function value along directions in the search set. Clearly, one can repeat such

local searches.

Corollary 3 Under Assumptions (A1) and (A2), if p ∈ ZN is not a minimizer of the

Lyapunov function L in (3), it holds L(p+ δ) < L(p) for some δ ∈ SD.

Now we can discuss the universally convergent dynamic auction in detail. Starting with

an arbitrarily given price vector p(t) ∈ ZN , the auction tries to solve the following maxi-
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mization problem with the unobservable Lyapunov function L

max
δ∈Conv(SD)

{L(p(t))− L(p(t) + δ)}. (9)

It follows from Proposition 2 that the continuous maximization problem over the entire

convex hull of the search set SD can be considerably reduced to the following discrete

optimization problem over the finite set SD of integer vectors:

max
δ∈SD

{L(p(t))− L(p(t) + δ)}. (10)

The maximand of (10) can be further written as

L(p(t))− L(p(t) + δ) =
∑
j∈B0

(V j(p(t))− V j(p(t) + δ))−
∑
i∈N

δi. (11)

Observe that the above formula involves every bidder’s valuation of every bundle of items,

so it involves private information. Apparently, it is impossible for the auctioneer to know

such information unless the bidders are willing to tell her. Fortunately, by Corollary 2

above she can immediately infer the difference between L(p(t)) and L(p(t) + δ) just from

the reported demands Dj(p(t)) and the price variation δ because Dj(p(t)) ⊇ Dj(p(t)+εδ)

for all j ∈ B and all ε ∈ [0, 1). In fact, when prices move from p(t) to p(t) + δ, the

reduction in indirect utility for bidder j is uniquely given by

V j(p(t))− V j(p(t) + δ) = min
xj∈Dj(p(t))

xj · δ. (12)

Consequently, equation (11) becomes the following simple formula whose right side involves

only price variation δ and optimal choices at p(t):

L(p(t))− L(p(t) + δ) =
∑
j∈B0

min
xj∈Dj(p(t))

xj · δ −
∑
i∈N

δi. (13)

From the above discussion, Proposition 2 and Corollary 2, we obtain the next crucial

proposition regarding problem (9).

Proposition 3 Under Assumptions (A1) and (A2), for any p(t) ∈ ZN we have

max
δ∈Conv(SD)

{L(p(t))− L(p(t) + δ)} = max
δ∈SD

{
∑
j∈B0

min
xj∈Dj(p(t))

xj · δ −
∑
i∈N

δi}. (14)

Note that the above formula shows a dramatic change from the unobservable Lyapunov

function L to the observable reported demands of bidders and integer price adjustment δ.

The right-hand max-min formula admits an intuitive and interesting interpretation:

19



• When the auctioneer adjusts the prices from p(t) to p(t+ 1) = p(t) + δ(t), she tries

to balance two opposing forces by minimizing every bidder’s loss for every possible

price change δ in the search set SD and choosing one price change from all possible

price changes that maximizes the seller’s gain.

• In the auction process bidders do nothing but report their demand sets Dj(p(t)) and

the auctioneer adjusts prices according to the right-hand formula of (14).

Formally, we can give the detailed steps of the auction as follows:

The Universally Convergent Dynamic (UCD) Auction

Step 1: The auctioneer announces an (arbitrary) initial integer price vector p(0) ∈

ZN . Let t := 0 and go to Step 2.

Step 2: Every agent j ∈ B0 reports her demand Dj(p(t)) at p(t) to the auctioneer.

Based on reported demands Dj(p(t)), the auctioneer calculates an optimal solution

δ(t) to the righthand problem of (14). As soon as the vector 0 of zeros is an optimal

solution to the problem, the auction stops. Otherwise, the auctioneer updates p(t+

1) := p(t) + δ(t) and t := t+ 1. Return to Step 2.

Note that this auction may run in several forms including ascending, descending, or

both. In principle, in which form the auction operates hinges upon the search set of the

underlying demand type, the starting prices, and the time. We now have

Theorem 3 Under Assumptions (A1) and (A2), starting with any given initial integer

price vector p(0) ∈ ZN , the UCD auction finds an integer competitive equilibrium vector

in a finite number of rounds.

Observe that the above theorem is very general and holds for all unimodular demand

types. This means that items can be substitutes, complements, or possess any other pos-

sible properties beyond substitutability or complementarity. The proof of the theorem

makes use of mainly convexity and unimodularity and does not invoke the familiar sub-

modularity. In the literature, submodularity is commonly used for the convergence of

auction; see Gul and Stacchetti (2000) and Ausubel (2006). It is known from Ausubel and

Milgrom (2002) that items are (gross) substitutes to a bidder if and only if the bidder’s

indirect utility function is submodular. Therefore, for gross substitutes, the Lyapunov
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function must be submodular. Substitutes are closely related to submodularity and com-

plements are related to supermodularity. Besides gross substitutes, there are so many

other different demand types which may not have a clear-cut property like substitutes or

complements and thus the corresponding Lyapunov function can be neither submodular

nor supermodular. As a result, it is natural and logical that the proof of the above theorem

relies mainly on convexity and unimodularity and cannot and do not use submodularity.

We now discuss the familiar ascending or descending auctions for the gross substitutes

of which we have had a far better understanding than of any other type; see e.g., Kelso and

Crawford (1982), Demange et al. (1986), Gul and Stacchetti (2000), Milgrom (2000), and

Crawford (2008) whose auctions are all ascending, and Ausubel (2006) whose auction can

be ascending or descending. Note that the well-known assignment or unit-demand market

models (see e.g., Crawford and Knoer 1981 and Demange et al. 1986) are special instances

of gross substitutes. Let D be the gross substitutes demand type given in Definition 4 of

Section 2. Then we have its search set SD = {0, 1}N ∪ {0,−1}N which has a clear-cut

structure. Let ∆ = {0, 1}N and let ∆̄ be the convex hull of the set ∆. Let ∆∗ = −∆

and ∆̄∗ = −∆̄. If we use the search set ∆ in the UCD auction and set the initial prices

p(0) so low that all the items are demanded by every agent, the auction is an ascending

one and can find the minimum Walrasian equilibrium prices. If we use the search set ∆∗

and set the initial prices p(0) so high that none of the items is demanded by any agent,

the auction is a descending one and can find the maximum Walrasian equilibrium prices.

In the case of gross substitutes, our UCD auction is similar to Ausubel’s and Gul and

Stacchetti’s in the ascending format and similar to Ausubel’s in the descending format.

Note that Klemperer (2008, 2010, 2018) proposed sealed-bid product-mix auctions for

substitutes.

5 Dynamic Auction Design with Strategic Bidders

In Section 4 we assume that every agent acts as a price-taker. In this section we drop that

assumption by considering a more natural and more realistic environment where bidders

are strategic and may therefore act strategically, and they may also occasionally make

mistakes. We investigate how we should expect such individuals to behave and how to

prevent their possible manipulation and miscalculation and how to allow them to learn,
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adjust, and correct if they make mistakes or behave badly. To address these questions,

we develop an efficient, incentive-compatible dynamic auction mechanism built upon the

basic dynamic auction introduced in the previous section.

Recall that M stands for the (original) market with m bidders and the seller with the

set N of n items. For every bidder j ∈ B, let M−j denote the market M without the

participation of bidder j and B−j = B0 \ {j}. For convenience, we set M−0 = M and

B−0 = B0. So, for every k ∈ B0, market M−k comprises the set B−k of agents and the

set N of n items. The seller always participates in every market and is not strategic.

The following defines the Vickrey-Clarke-Groves (VCG) mechanism; see Vickrey (1961),

Clarke (1971), and Groves (1973). The definition given below is more general than its stan-

dard one because we permit the seller to have a reserve function; see Ausubel and Cramton

(2004) on a similar extension for divisible goods. The standard one assumes that the seller

values everything at zero. Recall that R(N) denotes the market value of the items in N

for the market M. Let R−j(N) represent the market value of the items in N in the market

M−j for every j ∈ B based on the reported uj (j ∈ B0).

Definition 9 (VCG Mechanism) The VCG mechanism is the following procedure: Every

agent j ∈ B0 reports her value function uj . The auctioneer computes an efficient allocation

X with respect to all reported uj and assigns bundle xj to bidder j ∈ B and charges him

a payment of β∗
j = uj(xj)−R(N) +R−j(N), where R(N) and R−j(N) are the market

values of the items in N in the markets M and M−j for all j ∈ B, respectively. Bidder

j’s VCG payoff equals R(N)−R−j(N), j ∈ B.

It is known from Green and Laffont (1977) and Holmström (1979) that in the setting

of transferable utility any strategy-proof mechanism must generate the VCG outcome. As

discussed earlier, strategy-proof dynamic auctions have distinct advantages over those of

sealed-bid. In the case of a single item, it is easy to understand that the English auction

achieves the same outcome as the second-price sealed-bid auction does. For the assignment

market of Koopmans and Beckmann (1957) and Shapley and Shubik (1971), Crawford and

Knoer (1981) proposed the first dynamic auction which converges to a competitive equi-

librium by a limiting argument. Leonard (1983) showed that the minimum competitive

equilibrium price vector of this market coincides with the VCG payment. Demange et

al. (1986) proved that their dynamic auction finds the minimum competitive equilibrium

price vector and is strategy-proof in the sense of achieving an ex post Nash equilibrium

22



for sincere bidding. For the general gross substitutes (GS) model of Kelso and Craw-

ford (1982), Gul and Stacchetti (2000) demonstrated that their dynamic auction finds

the minimum competitive equilibrium price vector but cannot be strategy-proof. Ausubel

(2006) proposed a strategy-proof dynamic auction for the GS model by ingeniously ex-

ploring the m + 1 markets M−j for j ∈ B0 in the definition of the VCG outcome. His

analysis (Ausubel 2006, pp. 612-616, 622-624) on the strategy-proof outcome concentrates

on divisible goods and relies on calculus, convex analysis, and Theorem 1 of Krishna and

Maenner (2001). After introducing his basic dynamic auction for the indivisible GS goods,

Ausubel (2006, p. 620) briefly mentioned that his argument on strategy-proof results for

the divisible goods also applies to the indivisible GS case.

Here we offer a general analysis on strategic issues concerning indivisible goods and all

unimodular demand types. Although Ausubel’s auction and ours share similar strategic

properties such as ex post perfect Nash equilibrium for sincere bidding, his analysis and

ours are markedly different in nature and complement each other. Our analysis has to use

combinatorial arguments and rely on recent progress in discrete/combinatorial optimiza-

tion. More precisely, our strategy-proof results Theorems 4 and 5 depend on Theorem 3 in

Section 4 which in turn depends on Theorems 1 and 2, whose proofs rely on recent results

from discrete optimization, quite distinct from calculus and convex analysis. Recall that

Assumptions (A1) and (A2) for our model underlie our results of discrete/combinatorial

nature. Barring the use of Theorem 3, the argument for our Theorems 4 and 5 is combi-

natorial, intuitive, elementary, and noticeably different from that of Ausubel (2006).

5.1 Incentive Compatible Dynamic Auction Design

We now introduce an incentive-compatible dynamic auction mechanism based on the UCD

auction. Because bidders are strategic agents, they may submit whatever bids they like

in their best interests without openly flouting the auction rules and therefore their bids

could be different from their true demand sets. The mechanism runs the UCD auction as

described in Section 4 for every market M−k (k ∈ B0) with the following modifications.

Consider every market M−k, k ∈ B0. Let p
k(t) ∈ ZN denote the prices of the market M−k

at time t ∈ Z+. Then at time t ∈ Z+ and with respect to pk(t), every bidder j ∈ B−k

submits a bid Bj
k(t) ⊆ {0, 1}N which may differ from his true demand set Dj(pk(t)),

but the seller’s bid B0
k(t) always equals her true demand set D0(pk(t)). The auctioneer
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calculates an optimal solution δk(t) to the following modified righthand problem of (14)

max
δ∈SD

{
∑

j∈B−k

min
xj∈Bj

k(t)
xj · δ −

∑
i∈N

δi}. (15)

It is important to observe that in the above formula we replace the true demand set

Dj(pk(t)) in (14) by bid Bj
k(t) in order to take strategic behavior of bidders into consid-

eration. This can change the outcome of the auction and may have serious implications.

When the vector 0 of zeros is an optimal solution to (15), this means that the auction

finds an ‘equilibrium allocation’ Xk = (xk,j , j ∈ B−k) in the market M−k in the sense that

xk,j ∈ Bj
k(t) for every j ∈ B−k and

∑
j∈B−k

xk,j =
∑

i∈N e(i). Otherwise, when 0 is not an

optimal solution to (15), the auctioneer updates prices by setting pk(t+1) = pk(t)+ δk(t).

Because bidders may act strategically and so their bids may not be their true demand sets,

it is possible that the auction may never find an equilibrium allocation in some market

M−k. In this case, the auction fails to terminate and will require every bidder to pay a

penalty c > 0 for nothing. We now present the auction.

The Incentive Compatible Universal Dynamic (ICUD) Auction

Step 1: At first, the auctioneer announces a common price vector pk(0) = p(0) ∈ ZN

for all markets M−k, k ∈ B0. Let t := 0 and go to Step 2.

Step 2: At prices pk(t) ∈ ZN , every agent j ∈ B−k submits her bid Bj
k(t) ⊆ {0, 1}N .

Based on the reported bids, if the vector 0 of zeros is an optimal solution to (15),

the auctioneer finds an equilibrium allocation Xk in market M−k, and records the

current prices as pk(T k) ∈ Zn and the current time as T k ∈ Z+. For any marketM−k

which is not ‘in equilibrium’, the auctioneer calculates an optimal solution δk(t) to

(15) and announces a new price vector pk(t + 1) = pk(t) + δk(t). The auction goes

back to Step 2 with t := t + 1. If the auction has found an equilibrium allocation

Xk in every market M−k, k ∈ B0, go to Step 3.

Step 3: All markets now clear. For every k ∈ B0 and every agent j ∈ B−k at every

time t = 0, 1, · · · , T k−1, based on her reported bids Bj
k(t) and the price change δk(t),

the auctioneer calculates agent j′s ‘indirect utility reduction’ ∆k
j (t) when prices are

changed at time t from pk(t) to pk(t+ 1) in the market M−k, where

∆k
j (t) = min

xj∈Bj
k(t)

xj · δk(t). (16)
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Every bidder j ∈ B will be assigned the bundle x0,j of the allocation X0 = (x0,j , j ∈
B0) found in the original market M−0 = M and asked to pay βj , with the option

to decline and walk away freely, when his payoff becomes negative, where

βj =
∑

h∈B−j

[(T 0−1∑
t=0

∆0
h(t)−

T j−1∑
t=0

∆j
h(t)

)
+ xj,h · pj(T j)− x0,h · p0(T 0)

]
. (17)

The seller keeps the bundle x0,0 of the allocation X0 and receives the total payment∑
j∈B βj . The auction stops.

The payment formula (17) has three terms and can be explained intuitively as follows:

The first term is the accumulation of ‘indirect utility reduction’ of bidder j′s opponents in

B−j along the path from pj(T j) to p(0) in the market M−j and along the path from p(0)

to p0(T 0) in the market M; the second term stands for the total equilibrium payment

by all bidders in the market M−j , i.e., all opponents of bidder j; and the third term

represents the total equilibrium payment by all opponents of bidder j in the market M.

The final payment βj of bidder j equals the first term by adding the second term and

subtracting the third term. This payment formula is simple and easy to calculate, using

only revealed information, and having an intimate relation with the VCG payment as to

be shown later. Every bidder can easily use this payment formula to calculate his own

payment so can the seller for every bidder.

A bidder j is said to make mistakes or manipulate if his bid Bj(t) does not equal

his true demand set Dj(p(t)) at prices p(t). Observe that in Step 3 of our auction we

allow any bidder j ∈ B to decline any unacceptable assignment and walk away freely, if

accepting the assignment would give him a negative utility of uj(x0,j) − βj < 0, which

is caused by mistakes or manipulation. We call this option of letting bidders walk away

empty-handed without paying any penalty a lenient policy. This lenient policy is different

from Ausubel’s. In his auction, no bidder is given any opportunity to walk away freely

and may have to pay a huge amount6 according to the payment formula (7) of Ausubel

(2006, p. 611) if mistakes or manipulation have been made before a time t̄. This ends our

discussion on the case when the auction terminates in Step 3, i.e., in finite time. Now

we turn to another case–the broken down case–when the auction does not terminate. In

this case, our auction adopts a slightly different lenient policy which requires every bidder

6This amount depends on bidders’ behavior and is not known in advance.
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to pay a fixed penalty c > 0 and get no item. This lenient policy is also different from

Ausubel’s auction (2006, p. 613) which imposes a severe penalty of infinity.

These policies are not so innocent as they might appear. For Ausubel’s auction, the

severe penalty of infinity is necessary for the broken down case, because when bidders

make mistakes or manipulate and his auction stops, the payment of every bidder can be

extremely large and is unknown in advance so the only way of preventing his auction from

not stopping is to impose the penalty of infinity for every bidder. For our auction, the

light penalty of c > 0 for the broken case is possible, because our auction in Step 3 allows

bidders to walk away freely if their payoffs become negative. Our lenient policies provide

better opportunities for buyers to learn and adjust without paying high costs. But they

could be a disadvantage to the seller in the sense that the seller might not get a high

penalty as given by Ausubel’s auction.

It is also interesting to note that our ICUD auction can tolerate any mistake or ma-

nipulation made by bidders and allows bidders to learn, adjust, and correct so that for

any time t∗ ∈ Z+, no matter what has happened before t∗, as long as from t∗ on every

bidder bids truthfully and Assumptions (A1) and (A2) are satisfied, the ICUD auction

will find a competitive equilibrium in every market in finite time in Step 3, because the

UCD auction converges to a competitive equilibrium wherever it starts from ZN . In this

case, bidders may have to pay more by (17) than they act honestly and make no mistakes.

But they will never pay to such an extent that their payoffs become negative.

Another difference between Ausubel’s strategy-proof auction and our ICUD auction is

that his auction and payment rules are not symmetric and payment formula (7) of Ausubel

(2006, p.611) involves Stieltjes integrals of continuous price functions, whereas our ICUD

auction and payment rules (16) and (17) are symmetric, simple, and easy to calculate.7

To facilitate a better understanding of the ICUD auction we use Example 1 to illustrate

its operation before investigating its strategic properties. The auction starts with the prices

7Our ICUD auction starts with the same initial price vector p(0) for all markets M and M−j , j ∈ B,

whereas Ausubel’s auction (Ausubel 2006, pp. 615-616) starts with the same initial price vector p(0) only

for the markets M−j , j ∈ B, but for the market M his auction starts with the equilibrium price vector

p−k∗
of any chosen market M−k∗ . In his auction, the payment of bidder k∗ is given by Equation (7)

(Ausubel 2006, p. 611) using the price vectors along the path from p−k∗
to p∗. The payment of bidder j

(j ∈ B−k∗) is also given by Equation (7) but using the price vectors along the path from p−j to p0; the

path from p0 to p−k∗
; and the path from p−k∗

to p∗.
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p(0) = (pA(0), pB(0)) = (0, 0) and terminates in round t = 5. Prices pk(t), increments

δk(t), bids Bj
k(t), and indirect utility reductions ∆k

j (t) in each round t are shown in Table 4.

At t = 5, we have p0(5) = p1(5) = p2(5) = p3(5) = (2, 3), X0 = (x0,0, x0,1, x0,2, x0,3) =

(∅, AB, ∅, ∅), X1 = (x1,0, x1,2, x1,3) = (∅, AB, ∅), X2 = (x2,0, x2,1, x2,3) = (∅, AB, ∅), and

X3 = (x3,0, x3,1, x3,2) = (∅, ∅, AB). We also have B−1 = {0, 2, 3}, B−2 = {0, 1, 3}, and

B−3 = {0, 1, 2}. Taking utility reductions ∆k
j (t) in Table 4 into pricing formula (17) yields

β1 = 5, β2 = 0 and β3 = 0. Here we give one instance in detail:

β1 =
∑4

t=0∆
0
0(t)−

∑4
t=0∆

1
0(t) + x1,0 · p1(5)− x0,0 · p0(5)

+
∑4

t=0∆
0
2(t)−

∑4
t=0∆

1
2(t) + x1,2 · p1(5)− x0,2 · p0(5)

+
∑4

t=0∆
0
3(t)−

∑4
t=0∆

1
3(t) + x1,3 · p1(5)− x0,3 · p0(5) = 5

Consequently, bidder 1 gets the bundle AB and pays 5 in return and the other two bidders

get nothing and pay nothing. The seller receives 5 for the sale of her goods A and B.

5.2 The Dynamic Auction Game and Its Strategic Properties

Now we discuss how the ICUD auction can induce strategic bidders to bid truthfully as

price-takers, generating efficient outcomes even when these bidders have market power.

In particular, we will show that sincere bidding is an ex post perfect Nash equilibrium.

This can be seen as a vivid practical application of the fundamental solution concept for

dynamic games of incomplete information; see Fudenberg and Tirole (1991).

We need to formulate our ICUD auction as an extensive-form dynamic game of in-

complete information. In this (dynamic) auction game, all bidders are players. Prior to

the start of the game, every player j ∈ B knows privately only his own value function uj

satisfying Assumptions (A1) and (A2). The auctioneer knows that every bidder’s utility

function satisfies Assumptions (A1) and (A2) but does not know their utility functions.

The auctioneer initially announces a common price vector for all markets and every bidder

responds by reporting his bid to the auctioneer for every market in which he is involved.

Then based on reported bids the auctioneer checks if the aggregated demands equal the

aggregated supplies in every market or not. If all markets are cleared, the auction stops.

Otherwise, the auctioneer adjusts prices and bidders update their bids.
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Table 4: Illustration of the ICUD Auction.

Time t Prices Pk(t) Increments δk(t) Bids Bj
k(t) Utility Reductions ∆k

j (t)

t = 0

P 0(0) = (0, 0)

P 1(0) = (0, 0)

P 2(0) = (0, 0)

P 3(0) = (0, 0)

δ0(0) = (1, 0)

δ1(0) = (1, 0)

δ2(0) = (1, 0)

δ3(0) = (1, 0)

B0
0(0) = {AB}, B1

0(0) = {AB}

B2
0(0) = {AB}, B3

0(0) = {AB}

B0
1(0) = {AB}, B2

1(0) = {AB}, B3
1(0) = {AB}

B0
2(0) = {AB}, B1

2(0) = {AB}, B3
2(0) = {AB}

B0
3(0) = {AB}, B1

3(0) = {AB}, B2
3(0) = {AB}

∆0
0(0) = 1, ∆0

1(0) = 1, ∆0
2(0) = 1, ∆0

3(0) = 1

∆1
0(0) = 1, ∆1

2(0) = 1, ∆1
3(0) = 1

∆2
0(0) = 1, ∆2

1(0) = 1, ∆2
3(0) = 1

∆3
0(0) = 1, ∆3

1(0) = 1, ∆3
2(0) = 1

t = 1

P 0(1) = (1, 0)

P 1(1) = (1, 0)

P 2(1) = (1, 0)

P 3(1) = (1, 0)

δ0(1) = (1, 0)

δ1(1) = (1, 0)

δ2(1) = (1, 0)

δ3(1) = (1, 0)

B0
0(1) = {AB}, B1

0(1) = {AB}

B2
0(1) = {AB}, B3

0(1) = {AB}

B0
1(1) = {AB}, B2

1(1) = {AB}, B3
1(1) = {AB}

B0
2(1) = {AB}, B1

2(1) = {AB}, B3
2(1) = {AB}

B0
3(1) = {AB}, B1

3(1) = {AB}, B2
3(1) = {AB}

∆0
0(1) = 1, ∆0

1(1) = 1, ∆0
2(1) = 1, ∆0

3(1) = 1

∆1
0(1) = 1, ∆1

2(1) = 1, ∆1
3(1) = 1

∆2
0(1) = 1, ∆2

1(1) = 1, ∆2
3(1) = 1

∆3
0(1) = 1, ∆3

1(1) = 1, ∆3
2(1) = 1

t = 2

P 0(2) = (2, 0)

P 1(2) = (2, 0)

P 2(2) = (2, 0)

P 3(2) = (2, 0)

δ0(2) = (0, 1)

δ1(2) = (0, 1)

δ2(2) = (0, 1)

δ3(2) = (0, 1)

B0
0(2) = {AB,B}, B1

0(2) = {AB}

B2
0(2) = {AB}, B3

0(2) = {AB}

B0
1(2) = {AB,B}, B2

1(2) = {AB}, B3
1(2) = {AB}

B0
2(2) = {AB,B}, B1

2(2) = {AB}, B3
2(2) = {AB}

B0
3(2) = {AB,B}, B1

3(2) = {AB}, B2
3(2) = {AB}

∆0
0(2) = 1, ∆0

1(2) = 1, ∆0
2(2) = 1, ∆0

3(2) = 1

∆1
0(2) = 1, ∆1

2(2) = 1, ∆1
3(2) = 1

∆2
0(2) = 1, ∆2

1(2) = 1, ∆2
3(2) = 1

∆3
0(2) = 1, ∆3

1(2) = 1, ∆3
2(2) = 1

t = 3

P 0(3) = (2, 1)

P 1(3) = (2, 1)

P 2(3) = (2, 1)

P 3(3) = (2, 1)

δ0(3) = (0, 1)

δ1(3) = (0, 1)

δ2(3) = (0, 1)

δ3(3) = (0, 1)

B0
0(3) = {AB,B, ∅}, B1

0(3) = {AB}

B2
0(3) = {AB}, B3

0(3) = {AB}

B0
1(3) = {AB,B, ∅}, B2

1(3) = {AB}, B3
1(3) = {AB}

B0
2(3) = {AB,B, ∅}, B1

2(3) = {AB}, B3
2(3) = {AB}

B0
3(1) = {AB,B, ∅}, B1

3(3) = {AB}, B2
3(3) = {AB}

∆0
0(3) = 0, ∆0

1(3) = 1, ∆0
2(3) = 1, ∆0

3(3) = 1

∆1
0(3) = 0, ∆1

2(3) = 1, ∆1
3(3) = 1

∆2
0(3) = 0, ∆2

1(3) = 1, ∆2
3(3) = 1

∆3
0(3) = 0, ∆3

1(3) = 1, ∆3
2(3) = 1

t = 4

P 0(4) = (2, 2)

P 1(4) = (2, 2)

P 2(4) = (2, 2)

P 3(4) = (2, 2)

δ0(4) = (0, 1)

δ1(4) = (0, 1)

δ2(4) = (0, 1)

δ3(4) = (0, 1)

B0
0(4) = {∅}, B1

0(4) = {AB}

B2
0(4) = {∅}, B3

0(4) = {AB, ∅}

B0
1(4) = {∅}, B2

1(4) = {AB}, B3
1(4) = {AB, ∅}

B0
2(4) = {∅}, B1

2(4) = {AB}, B3
2(4) = {AB, ∅}

B0
3(4) = {∅}, B1

3(4) = {AB}, B2
3(4) = {AB}

∆0
0(4) = 0, ∆0

1(4) = 1, ∆0
2(4) = 1, ∆0

3(4) = 0

∆1
0(4) = 0, ∆1

2(4) = 1, ∆1
3(4) = 0

∆2
0(4) = 0, ∆2

1(4) = 1, ∆2
3(4) = 0

∆3
0(4) = 0, ∆3

1(4) = 1, ∆3
2(4) = 1

t = 5

P 0(5) = (2, 3)

P 1(5) = (2, 3)

P 2(5) = (2, 3)

P 3(5) = (2, 3)

δ0(5) = (0, 0)

δ1(5) = (0, 0)

δ2(5) = (0, 0)

δ3(5) = (0, 0)

B0
0(5) = {∅}, B1

0(5) = {AB,A, ∅}

B2
0(5) = {AB,A, ∅}, B3

0(5) = {∅}

B0
1(5) = {∅}, B2

1(5) = {AB,A, ∅}, B3
1(5) = {∅}

B0
2(5) = {∅}, B1

2(5) = {AB,A, ∅}, B3
2(5) = {∅}

B0
3(5) = {∅}, B1

3(5) = {AB,A, ∅}, B2
3(5) = {AB,A, ∅}

∆0
0(5) = 0, ∆0

1(5) = 0, ∆0
2(5) = 0, ∆0

3(5) = 0

∆1
0(5) = 0, ∆1

2(5) = 0, ∆1
3(5) = 0

∆2
0(5) = 0, ∆2

1(5) = 0, ∆2
3(5) = 0

∆3
0(5) = 0, ∆3

1(5) = 0, ∆3
2(5) = 0

In this auction, announced prices in each market can be observed by all bidders. Every

bidder knows of course his own bids. Whether a bidder can observe bids of other bidders

depends on the specification of the auction rule. In the current auction the auctioneer

can ask every bidder to either publicly reveal his bids or just submit his bids privately to

her. We use Ht
j to denote the part of the information or history of play that player j has

observed so far right after prices at time t ∈ Z+ have been announced but no players have

placed their bids at the current prices. A natural specification is that Ht
j contains his own

utility function uj , all observable prices before and at time t in every market in which he

takes part, all his own bids and all possibly revealed bids of other players before time t.
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At every time t ∈ Z+, after the auctioneer announces current prices for each market,

every bidder will think about how to bid based upon all currently available information to

him. The (dynamic) strategy σj of player j, j ∈ B, is a set-valued function which specifies

his bids σj(t, k,H
t
j) = Bj

k(t) ⊆ {0, 1}N for every market M−k, k ∈ B0 \ {j}, at every

time t ∈ Z+, and for every history Ht
j . Let Σj denote the strategy space of all player

j’s strategies σj . Obviously, player j’s strategy space Σj contains his sincere bidding

strategies as specified in Definition 7 and many other strategies as well. The outcome

of the ICUD auction game relies totally upon the auction rules, the histories, and the

strategies the bidders may adopt. When every bidder j ∈ B takes a strategy σj ∈ Σj and

the ICUD auction terminates in Step 3, then bidder j ∈ B receives bundle x0,j and pays βj

given by (17), or simply walks away. In this case, his payoff equals max{uj(x0,j)− βj , 0}.

Otherwise, the auction is in the broken down state in which every bidder gets no item but

pays a fixed penalty c > 0.

In the literature for static auction games of incomplete information, the notion of

ex post equilibrium has been used by Cremér and McLean (1985), Krishna (2002), and

Perry and Reny (2005). This solution requires that the strategy for every player should

remain optimal if the player were to get to know types of his opponents. Ausubel (2004,

2006) and Sun and Yang (2014) have adopted the solution of ex post perfect equilibrium

to dynamic auction games of incomplete information which requires the same condition

for every player at every node of the dynamic auction game.

Definition 10 (Ex Post Perfect Nash Equilibrium) The strategy m-tuple {σj}j∈B of the

dynamic auction game of incomplete information is an ex post perfect (Nash) equilibrium

if for every time t ∈ Z+, following any history {Ht
j}j∈B, and for any realization {uj}j∈B of

private information, the continuation strategies σj(·, ·, · | t, k,Ht
j) for every player j ∈ B

and for every market k ∈ B0 \ {j} constitute a Nash equilibrium of the game even if the

realization {uj}j∈B becomes common knowledge.

An important advantage of ex post perfect equilibrium over Bayesian equilibrium or

perfect Bayesian equilibrium is that it is not only robust against any regret but also

independent of any probability distribution. It is very useful in practice as it is very

difficult to elicit or gauge a probability distribution of a bidder’s valuation. The notion

of ex post perfect equilibrium is a refinement of ex post Nash equilibrium and therefore
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more desirable and stronger than the latter.

Now we demonstrate several important and appealing properties of the ICUD auction.

Theorem 4 Under Assumptions (A1) and (A2), if every bidder bids sincerely, the ICUD

auction converges to a competitive equilibrium, yielding a VCG outcome for the market

M, in a finite number of rounds.

Theorem 5 Under Assumptions (A1) and (A2), sincere bidding by every bidder is an ex

post perfect equilibrium in the ICUD auction.

We say that a mechanism is beneficial to every agent if the payment the seller receives

for every sold bundle is at least as big as her reserve price of the bundle or the total utility

she receives is at least as good as she does not trade, and if the net profit for every bidder

is nonnegative.

Proposition 4 Under Assumptions (A1) and (A2), if every bidder bids sincerely, the

ICUD auction mechanism is beneficial to every agent, provided that the seller’s utility

function u0 is either submodular or superadditive.

An auction mechanism is said to be ex post individually rational, if, for every bidder,

no matter how his opposing bidders act in the auction, as long as he is sufficiently able to

judge whether his payoff is negative or nonnegative, he will never end up with a negative

payoff. This property is quite desirable for practical auction design. We conclude with

the following proposition.

Proposition 5 Under Assumptions (A1) and (A2), the ICUD auction is ex post individ-

ually rational.
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Appendix

We first review several mathematical concepts. A polytope can be also defined as a

convex hull of finitely many vectors in IRN . An edge of a polyhedron is a face of dimension

one and a vector is an edge-direction vector of an edge if it is a non-zero scalar multiple of

the difference of any two distinct points on the edge. So, if v is an edge-direction vector,

then αv for any α ̸= 0 is also an edge-direction vector so is −αv.

A set S ⊆ ZN is discrete convex if S = Conv(S)∩ZN . A function f : ZN → IR is discrete

concave if, for any finite number of λj ≥ 0, j = 1, · · · , t and any xj ∈ ZN for j = 1, · · · , t

with
∑t

j=1 λj = 1 and
∑t

j=1 λjx
j ∈ ZN , we have f(

∑t
j=1 λjx

j) ≥
∑

j=1 λjf(x
j). Given

a lattice S ⊆ ZN , a function f : S → IR ∪ {+∞} is submodular if f(x) + f(y) ≥ f(x ∨

y) + f(x ∧ y) for any x, y ∈ S. When a utility function of items is submodular, it has

decreasing marginal returns over any item. This means that items exhibits substitutability.

A function f : S → IR is subadditive if f(x+y) ≤ f(x)+f(y) for any x, y ∈ S. Subadditivity

reflects a more general substitutability. A function f is supermodular if −f is submodular.

If a utility function of items is supermodular, then these items have increasing marginal

returns and show complementarity. A function f is superadditive if −f is subadditive.

Superadditivity is more general than supermodularity. See Murota (2003) and Fujishige

(2005) in detail. Given a utility function u : S → IR ∪ {−∞} with a finite set S ⊂ ZN

and ♯dom(u) > 1, we say that a set Du of primitive vectors in ZN is a demand edge-set of

function u if every v ∈ Du is an edge-direction vector of the convex hull of some demand

set Du(p) with ♯Du(p) > 1. Observe that we have v ∈ Du if and only if v is normal to

some facet of the LIP Tu.

Proof of Proposition 1: Let D = {v1, v2, · · · , vk,−v1,−v2, · · · ,−vk} be an arbitrarily

given unimodular demand type. To prove the result, it suffices to consider the n × k

integer matrix A = [v1, v2, · · · , vk]. If the rank of A, denoted by rank(A), is equal to n,

we are done. Assume that rank(A) = r < n. Choose a submatrix B formed by r linearly

independent columns of A. Then by definition there exists an n× (n− r) matrix C such

that the matrix U ≡ [C
...B] is unimodular. Below Il and O(n−l)×l represent the identity

matrix of order l and an (n− l)× l matrix with entries 0′s, respectively. We have

U−1[C
...B] =

 In−r O(n−r)×r

Or×(n−r) Ir

 (18)
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Now choose another submatrix D formed by r linearly independent columns of A. To ease

exposition but without loss of generality, we assume that A = [B
...D]. We will show that

[C
...D] is unimodular, i.e., both B and D can use the common set C to form unimodular

matrices. Note that for some r × r matrix D0 with rank(D0) = r we have

U−1[C
...B

...D] =

 In−r O(n−r)×r O(n−r)×r

Or×(n−r) Ir D0

 , (19)

where the form of the last r columns follows from the assumption that rank(A) = r.

Moreover, there exists an n × (n − r) matrix E such that the matrix V ≡ [E
...D] is

unimodular. Then for some r × r matrix B0 with rank(B0) = r we have

V −1[C
...B

...D] =

C̃1 O(n−r)×r O(n−r)×r

C̃2 B0 Ir

 . (20)

Since U and V are unimodular, it follows from (20) that we have

det(V −1[C
...B]) = det(C̃1)det(B0) = ±1(= det(V −1U)). (21)

Hence from (21) we have

det(B0) = ±1. (22)

since C̃1 and B0 are integer matrices.

Because of the symmetry between (B,U) and (D,V ) we also have

det(D0) = ±1 (23)

as a counterpart of (22). Hence, [C
...D] is also unimodular because of (19). Consequently,

we can use C instead of E for D to get a unimodular matrix [C
...D]. We are done. 2

The proof of Lemma 1 is easy. Also, Lemma 2 follows immediately from the definition

of Lyapunov function L and Lemma 1.

Proof of Lemma 3: By the assumption the demand edge-set Du is full-dimensional

and so is the demand type D(⊇ Du). Let x
∗ be an extreme point of the full-dimensional,

convex hull of the set Du(p). There exists a set of n linearly independent edge-direction

vectors d1, · · · , dn ∈ Du that are extreme vectors of the tangent cone of the convex hull

of the set Du(p) at x
∗. Let y = p · (x− x∗) + u(x∗) be the hyperplane that supports u at

every point of Du(p). Then we have

p · di = u(x∗ + di)− u(x∗) (∀i = 1, · · · , n). (24)
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Since d1, · · · , dn ∈ D form a unimodular matrix and the right-hand side of (24) is an

integer for each i = 1, · · · , n by the assumption, p is a unique integral vector satisfying

equation (24). 2

The following result is given in Tran and Yu (2019), revealing an important property

concerning the unimodular demand type and will be used in our proof of Lemma 4 below.

See Murota and Tamura (2024) for a survey on this result.

Lemma 6 Suppose that M is a unimodular matrix, and that P and Q are integral

polytopes with edges parallel to columns of M . Then, P ∩ ZN +Q ∩ ZN = (P +Q) ∩ ZN .

Proof of Lemma 4: Take any xj ∈ Dj(p) for all j ∈ B0. Then g(x) =
∑

j∈B0
uj(xj)

with x =
∑

j∈B0
xj . By definition for all j ∈ B0 we have

uj(xj)− p · xj ≥ uj(yj)− p · yj , for all yj ∈ dom(g). (25)

Clearly, for all yj ∈ dom(g) (j ∈ B0) satisfying
∑

j∈B0
xj =

∑
j∈B0

yj we have

uj(xj)− p · xj ≥ uj(yj)− p · yj .

Now adding all inequalities up yields

∑
j∈B0

uj(xj) ≥
∑
j∈B0

uj(yj) (26)

for all yj ∈ dom(g) (j ∈ B0) satisfying
∑

j∈B0
xj =

∑
j∈B0

yj . By definition u(x) =∑
j∈B0

uj(xj). Observe that the inequality (26) still holds true if g(z) =
∑

j∈B0
uj(zj)

with x = z =
∑

j∈B0
zj and zj ∈ Dj(q) for j ∈ B0 and q ̸= p. This shows g(x) = u(x) and

g is well-defined.

Because of the definition of convolution, for any p ∈ IRN we have

Du(p) = max{u(x)− p · x | x ∈ ZN} =
∑
j∈B0

max{u(xj)− p · xj | xj ∈ {0, 1}N}. (27)

It is clear that Du(p) = DMs(p). Hence we have the following relation, i.e., equation (6):

DMs(p) = D0(p) +D1(p) + · · ·+Dm(p) = Du(p). (28)

Since by Assumption (A2) all Dj(p) (j ∈ B0) have the same unimodular demand type D

and the Minkowski-sum operation is associative, it follows from (28) and Lemma 6 that
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Du(p) also has the same unimodular demand type D and Conv(Du(p)) ∩ ZN = Du(p).

Because for every p ∈ IRN the set Du(p) is discrete convex, u is clearly a discrete concave

function with the unimodular demand type D. 2

Proof of Theorem 1: Let P be the set of competitive equilibrium price vectors. It

follows from Baldwin and Klemperer (2018, Theorem 4.3) that there exists at least one

competitive equilibrium price vector. Because all uj , j ∈ B0, are integer-valued and

of unimodular demand type D, it follows from Lemma 4 that their convolution u is a

discrete concave integer-valued function with the same unimodular demand type D. We

know that p ∈ IRN is a competitive equilibrium price vector if and only if it is a minimizer

of the Lyapunov function L. The convexity of the function L implies that the set P is

a polyhedral convex set since the function L is polyhedral by Lemma 2. Clearly, it is

nonempty and bounded, and hence it is a polytope.

Next we prove that every vertex of P is integral. This follows immediately from the

fact that the extreme points of the set P are normal vectors p of hyperplanes supporting

the convolution u at a full-dimensional demand set DMs(p) and hence integral by Lemma 3

because of Assumptions (A1) and (A2). 2

Proof of Lemma 5: Let M = [d1, · · · , dn−1, dn] be the n× n matrix and δ∗ be the nth

row of M−1. Then we have δ∗ · dj = 0 for j = 1, · · · , n− 1 and δ∗ · dn = 1. Since M is a

unimodular matrix, δ∗ is an integral vector. Hence δ∗ = αδ or δ∗ = −αδ for some α ≥ 1

because of the definition of δ. Consequently, we have α|δ · dn| = δ∗ · dn = 1. 2

Proof of Proposition 2: We only need to consider the case that p(t) is not a Walrasian

equilibrium price vector. Choose any δ ∈ SD. Let δ be a primitive normal vector of

an (n − 1)-dimensional space spanned by d1, · · · , dn−1 ∈ D. We need to consider the

convolution u of all uj defined by (4) and the associated Minkowski sum DMs given by

(6). It follows from Lemma 4 that DMs has the same demand type D as every bidder has.

Regarding L(p(t)+ εδ) as a function in ε ≥ 0, we have a function that changes linearly

as ε increases from 0 up to the point ε = ε∗ > 0 where DMs(p(t) + εδ) \DMs(p(t)) ̸= ∅.

This is equivalent to that for all j ∈ B we have Dj(p(t) + εδ) ⊆ Dj(p(t)) (∀ε ∈ [0, ε∗))

and for some j ∈ B we have Dj(p(t) + ε∗δ) \Dj(p(t)) ̸= ∅. Also note that DMs(p(t) + εδ)

remains the same for all ε ∈ (0, ε∗). Observe that if such a point ε∗ does not exist, we

consider ε∗ = +∞ and we can choose ε = 1 < ε∗ in the following argument. Hence we
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assume such a finite ε∗ always exists. Then there exist some d∗ ∈ D and an element (a

vertex) x∗ of DMs(p(t)+εδ) for 0 < ε < ε∗ such that x∗+d∗ ∈ DMs(p(t)+ε∗δ)\DMs(p(t))

and for the convolution u of all uj we have

u(x∗ + d∗) = (p(t) + ε∗δ) · ((x∗ + d∗)− x∗) + u(x∗). (29)

From this we have

ε∗δ · d∗ = u(x∗ + d∗)− u(x∗)− p(t) · d∗. (30)

Moreover, we can see that d∗ is not spanned by d1, · · · , dn−1. Hence d1, · · · , dn−1, d
∗

is linearly independent and we have δ · d∗ > 0 due to the definition of d∗. It follows from

Lemma 5 that we have

0 < δ · d∗ ≤ 1. (31)

Since the right-hand side of (30) is a non-zero integer, we see from (30) and (31) that

ε∗ ≥ 1.

Since δ ∈ SD is chosen arbitrarily in the above argument, we see that for each δ ∈ SD

the function L(p(t)+εδ) in ε is linear on the interval [0, 1]. Hence L(p(t)+δ′) as a function

in δ′ is a polyhedral conical convex function restricted on Conv(SD). This implies that

equation (8) holds. 2

Proof of Corollary 1: We see from the proof of Proposition 2 that L(p(t) + δ′) as

a function in δ′ is a polyhedral conical convex function restricted on Conv(SD) and is

generated by function values L(p(t) + εδ) for all ε ∈ [0, 1] and all δ ∈ SD. Hence the set

of solutions to the left-side problem of (8) is a nonempty integral polytope. 2

Proof of Corollary 2: The proof of Proposition 2 implies that Dj(p+ εδ) ⊆ Dj(p) and

hence

xj ∈ arg min
x∈Dj(p)

x · δ

lies in Dj(p+ εδ) for all ε ∈ [0, 1). If Dj(p+ δ) ̸⊆ Dj(p), then we have

Dj(p) ∩Dj(p+ δ) = arg min
x∈Dj(p)

δ · x = arg max
x∈Dj(p+δ)

δ · x. (32)

Hence xj ∈ argminx∈Dj(p) x · δ lies in Dj(p+ δ). 2
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Proof of Theorem 2: By Theorem 1 the auction market has a competitive equilibrium

with an integral equilibrium price vector. Then by Proposition 1 of Ausubel (2006) and

Lemma 1 of Sun and Yang (2009), a vector is a competitive equilibrium price vector if

and only if it is a minimizer of the Lyapunov function.

Obviously, if p∗ is a minimizer of the Lyapunov function L, clearly it holds L(p∗) ≤

L(p∗ + δ) for all δ ∈ SD.

Assume now that L(p∗) ≤ L(p∗ + δ) for all δ ∈ SD. We claim that L(p) ≥ L(p∗)

for all p ∈ IRN . Then p∗ is a minimizer of the Lyapunov function L. Suppose to the

contrary that there exists some p ̸= p∗ such that L(p) < L(p∗). Since Conv(SD) is a

full-dimensional convex set in IRN containing the n-vector 0 of zeros in its interior and

so the set {p∗} + Conv(SD) is also a full-dimensional convex set in IRN having p∗ in its

interior, one can easily take a strictly convex combination p′ of p and p∗ by choosing a

sufficiently small α ∈ (0, 1) such that p′ = αp+ (1−α)p∗ ∈ {p∗}+Conv(SD) and is close

to p∗. Because of the convexity of L(·), α > 0, and L(p)− L(p∗) < 0, we have

L(p′) ≤ αL(p) + (1− α)L(p∗) = L(p∗) + α(L(p)− L(p∗)) < L(p∗). (33)

It follows immediately from Proposition 2 and inequality (33) that

min
δ∈Conv(SD)

L(p∗ + δ) = min
δ∈SD

L(p∗ + δ) ≤ L(p′) < L(p∗)

contradicting the hypothesis. This shows that L(p∗) ≤ L(p) holds for all p ∈ IRN and so

p∗ is a minimizer of the Lyapunov function L, i.e., a competitive equilibrium price vector.

2

Proof of Corollary 3: By Theorem 1, the set of competitive equilibrium price vectors

is a nonempty integral polytope. By assumption, p is not a minimizer of L, i.e., p is not

a competitive equilibrium price vector. Suppose to the contrary that there is no δ ∈ SD

such that L(p + δ) < L(p). Then we must have L(p) ≤ L(p + δ) for all δ ∈ SD. By

Theorem 2, p is a minimizer of the Lyapunov function L, contradicting the assumption.

2

Proof of Theorem 3: Because the Lyapunov function L(·) is convex and bounded from

below and has a minimizer, any minimizer of the Lyapunov function is a competitive

equilibrium price vector. Since the prices and value functions take only integer values and

the UCD auction lowers the value of the Lyapunov function by a positive integer value
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in each round, the process must terminate in finite rounds, i.e., δ(t∗) = 0 in Step 2 for

some t∗ ∈ Z+. Let p(0), p(1), · · · , p(t∗) be the generated finite sequence of price vectors.

Clearly, we must have L(p(t∗)) ≤ L(p(t∗) + δ) for all δ ∈ SD. Otherwise, we would have

L(p(t∗)) > L(p(t∗) + δ) for some δ ∈ SD with δ ̸= 0, contradicting δ(t∗) = 0. It follows

from Theorem 2 that p(t∗) is a minimizer of the Lyapunov function, i.e., a competitive

equilibrium price vector. 2

Proof of Theorem 4: Because every bidder j ∈ B bids straightforwardly according to

his true UTD D function uj and Assumptions (A1) and (A2) are satisfied, by Theorem 3 of

Section 4 the auction finds a competitive equilibrium (pk(T k), Xk) in every market M−k,

k ∈ B0. As bidders act truthfully, then for every bidder j ∈ B−k in every market M−k at

any time t ∈ Z+ we have Bj
k(t) = Dj(pk(t)). It further follows from (12) in Section 4 that

∆k
j (t) = min

xj∈Bj
k(t)

xj · δk(t) = V j(pk(t))− V j(pk(t+ 1)).

By the rule in Step 3 of the auction, every bidder j ∈ B pays βj of (17) for the bundle

x0,j assigned to him. It will be shown that βj is actually equal to the VCG payment

of bidder j given by β∗
j = uj(xj,0) − R(N) + R−j(N), where R(N) =

∑
h∈B uj(x0,h)

and R−j(N) =
∑

h∈B−j
uj(xj,h). Recall that pk(0) = p(0) for every k ∈ B0. It follows

from (17) that

βj =
∑

h∈B−j

[(∑T 0−1
t=0 ∆0

h(t)−
∑T j−1

t=0 ∆j
h(t)

)
+ xj,h · pj(T j)− x0,h · p0(T 0)

]
=

∑
h∈B−j

(∑T 0−1
t=0 (V h(p0(t))− V h(p0(t+ 1)))

−
∑T j−1

t=0 (V h(pj(t))− V h(pj(t+ 1)))
)

+
∑

h∈B−j
xj,h · pj(T j)−

∑
h∈B−j

x0,h · p0(T 0)

=
∑

h∈B−j

(
(V h(p0(0))− V h(p0(T 0)))− (V h(pj(0))− V h(pj(T j)))

)
+
∑

h∈B−j
xj,h · pj(T j)−

∑
h∈B−j

x0,h · p0(T 0)

=
∑

h∈B−j

(
V h(pj(T j)) + xj,h · pj(T j)

)
−

∑
h∈B−j

(
V h(p0(T 0)) + x0,h · p0(T 0)

)
=

∑
h∈B−j

uj(xj,h)−
∑

h∈B−j
uj(x0,h) = uj(x0,j)−R(N) +R−j(N) = β∗

j .

2

Proof of Theorem 5: Consider any time t̂ ∈ Z+, any history profile {H t̂
h}h∈B, and

any realization {uh}h∈B of profile of utility functions of private information. Clearly, the

outcome of the game depends on the histories H t̂
h for h ∈ B and actions that bidders will

take in the continuation game starting from t̂. Note that bidders cannot change histories

but can influence the path of the future from t̂ on. Take any player j ∈ B. Suppose that in
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the continuation game from time t̂ on, every opponent h ∈ B−j of player j bids sincerely

at any t ∈ Z+(t ≥ t̂) and in every market M−k for k ∈ B0, namely,

σh(t, k,H
t
h) = Bh

k (t) = Dh(pk(t)) = arg max
x∈{0,1}N

{uh(x)− x · pk(t)}.

It implies that for every bidder h ∈ B−j in the markets M−j and M at every time t ≥ t̂

∆j
h(t) = min

xh∈Bh
j (t)

xh · δh(t) = V h(pj(t))− V h(pj(t+ 1))

and ∆0
h(t) = minxh∈Bh

0 (t)
xh · δh(t) = V h(p0(t)) − V h(p0(t + 1)). However, the above

equations do not necessarily hold true for time t < t̂.

Clearly, in this continuation game from time t̂, when all opponents of player j choose

sincere bidding strategies, because of the option of walking away in Step 3, bidder j prefers

a strategy which causes the auction to stop at Step 3 and yields a nonnegative payoff to

him, to any other strategy which leads the auction to the broken down case and gives

him a strictly negative payoff of −c < 0. Therefore, it is sufficient to compare the sincere

bidding strategy with any other strategy which leads the auction to Step 3. Suppose that

σ′
j(·, ·, · | t̂, k,H t̂

j) (σ′
j in short) for all k ∈ B0 \ {j} is such a continuation strategy of

player j resulting in an allocation (y0,h, h ∈ B) in the market M, and that bidder j’s

(continuation) sincere bidding strategy results in an allocation (x0,h, h ∈ B) in the market

M by Theorem 3 in Section 4. Without any loss of generality, we assume that by the time

t̂, the auction has not found any allocation in the markets M and M−j , i.e., t̂ < T−0 and

t̂ < T−j . When player j chooses the strategy σ′
j , his payment β′

j given by (17) is

β′
j =

∑
h∈B−j

[(∑T 0−1
t=0 ∆0

h(t)−
∑T j−1

t=0 ∆j
h(t)

)
+ xj,h · pj(T j)− y0,h · p0(T 0)

]
=

∑
h∈B−j

(∑t̂−1
t=0 ∆

0
h(t) +

∑T 0−1
t=t̂

∆0
h(t)−

∑t̂−1
t=0 ∆

j
h(t)−

∑T j−1
t=t̂

∆j
h(t)

)
+
∑

h∈B−j
xj,h · pj(T j)−

∑
h∈B−j

y0,h · p0,h(T 0)

=
∑

h∈B−j

[∑t̂−1
t=0 ∆

0
h(t) +

∑T 0−1
t=t̂

(V h(p0(t))− V h(p0(t+ 1)))

−
∑t̂−1

t=0 ∆
j
h(t)−

∑T j−1
t=t̂

(V h(pj(t))− V h(pj(t+ 1)))
]

+
∑

h∈B−j
xj,h · pj(T j)−

∑
h∈B−j

y0,h · p0,h(T 0)

=
∑

h∈B−j

(∑t̂−1
t=0[∆

0
h(t)−∆j

h(t)] + V h(p0(t̂)) + V h(pj(T j))− V h(pj(t̂))
)

+
∑

h∈B−j
xj,h · pj(T j)−

(∑
h∈B−j

V h(p0(T 0)) +
∑

h∈B−j
y0,h · p0(T 0)

)
= Γ−j −

∑
h∈B−j

uh(y0,h),

where Γ−j is given by

Γ−j =
∑

h∈B−j

[∑t̂−1
t=0

(
∆0

h(t)−∆j
h(t)

)
+ V h(p0(t̂)) + V h(pj(T j))− V h(pj(t̂))

+xj,h · pj(T j)
]
.
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Observe that Γ−j is totally determined by the history profile {H t̂
h}h∈B and the market

M−j without bidder j, and does not depend on player j’s strategy σ′
j . Similarly, we can

prove that if bidder j adopts the sincere bidding strategy, his payment β̂j will be

β̂j = Γ−j −
∑

h∈B−j

uh(x0,h).

Moreover it follows from Theorem 3 in Section 4 that when bidders bid truthfully according

to their utility functions uh, h ∈ B, and Assumptions (A1) and (A2) are satisfied, the

allocation (x0,h, h ∈ B) in the market M found by the auction will be efficient. That is,

uj(x0,j) +
∑

h∈B−j

uh(x0,h) ≥ uj(y0,j) +
∑

h∈B−j

uh(y0,h).

Taking the option of walking away into every bidder’s account together with the above

discussion gives the payoff P̂j of bidder j in the case of using the sincere bidding strategy

and his payoff P ′
j in the case of using the strategy σ′

i as follows

P̂j = max{uj(x0,j)− β̂j , 0}

= max{uj(x0,j)− (Γ−j −
∑

h∈B−j
uh(x0,h)), 0}

= max{uj(x0,j) +
∑

h∈B−j
uh(x0,h)− Γ−j , 0}

≥ max{uj(y0,j) +
∑

h∈B−j
uh(y0,h)− Γ−j , 0}

= max{uj(y0,j)− β′
j , 0} = P ′

j .

This demonstrates that every player’s sincere bidding strategy is indeed his ex post perfect

strategy. Therefore bidding sincerely by every bidder is an ex post perfect equilibrium.

2

Proof of Proposition 4: It follows from the proof of Theorem 4 that every bidder

j ∈ B receives bundle x0,j and pays β∗
j and his net profit equals

uj(x0,j)− β∗
j = R(N)−R−j(N) =

∑
h∈B0

uh(x0,h)−
∑

h∈B−j
uh(xj,h)

=
∑

h∈B0
uh(x0,h)−

∑
h∈B0

uh(xj,h) ≥ 0

where xj,j = 0.

We now prove that the auction is also beneficial to the seller. First, consider the case

that u0 is submodular. Recall that for every k ∈ B, (xk,h, h ∈ B−k) is the equilibrium

allocation in market M−k found by the auction. By definition, it is easy to see that

R−j(N) =
∑

h∈B−j

uh(xj,h) ≥
∑

h∈B\{j}

uh(x0,h) + u0(x0,0 + x0,j).
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The utility P̃0 received by the seller equals

P̃0 = u0(x0,0) +
∑

j∈B β∗
j

=
∑

j∈B

(
uj(x0,j)−R(N) +R−j(N)

)
=

∑
j∈B R−j(N)− (m− 1)R(N)

≥
∑

j∈B

(
u0(x0,0 + x0,j) +

∑
h∈B\{j} u

h(x0,h)
)
− (m− 1)R(N)

=
∑

j∈B u0(x0,0 + x0,j)− (m− 1)u0(x0,0).

Then submodularity implies that for every j = 1, 2, · · · ,m− 1 we have

u0(

j∑
h=0

x0,h) + u0(x0,0 + x0,j+1) ≥ u0(

j+1∑
h=0

x0,h) + u0(x0,0).

Summing up these inequalities leads to∑
j∈B

u0(x0,0 + x0,j) ≥ u0(
∑
j∈B0

x0,j) + (m− 1)u0(x0,0)

from which we have

P̃0 =
∑
j∈B

u0(x0,0 + x0,j)− (m− 1)u0(x0,0) ≥ u0(
∑
j∈B0

x0,j) = u0(N).

So the utility the seller receives from trading is at least as good as she does not trade.

Second, consider the case that u0 is superadditive. For every j ∈ B we have

R−j(N) =
∑

h∈B−j

uh(xj,h) ≥
∑

h∈B\{j}

uh(x0,h) + u0(x0,0 + x0,j)

and u0(x0,0 + x0,j) ≥ u0(x0,0) + u0(x0,j). Then the utility P̃0 received by the seller equals

P̃0 = u0(x0,0) +
∑

j∈B β∗
j

= u0(x0,0) +
∑

j∈B[u
j(x0,j)−R(N) +R−j(N)]

= u0(x0,0) +
∑

j∈B

(
uj(x0,j)− (u0(x0,0) +

∑
h∈B uh(x0,h)) +R−j(N)

)
= u0(x0,0) +

∑
j∈B[R−j(N)− (u0(x0,0) +

∑
h∈B\{j} u

h(x0,h))]

= u0(x0,0) +
∑

j∈B

(
u0(x0,j) +R−j(N)− (u0(x0,0) + u0(x0,j) +

∑
h∈B\{j} u

h(x0,h))
)

≥ u0(x0,0) +
∑

j∈B[u
0(x0,j) +R−j(N)− (u0(x0,0 + x0,j) +

∑
h∈B\{j} u

h(x0,h))]

≥ u0(x0,0) +
∑

j∈B

(
u0(x0,j) +R−j(N)−R−j(N)

)
=

∑
j∈B0

u0(x0,j).

This shows that the payment β∗
j received by the seller for every sold bundle x0,j is at least

as big as its reserve price u0(x0,j). We are done. 2

Proof of Proposition 5: Because every bidder has the option of walking away in Step 3

and faces no punishment in Step 4, his final payoff cannot be negative if he is able to judge
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between positive and negative numbers, not necessarily acting optimally. Consequently,

the ICUD auction is ex post individually rational. 2
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