Department of Chemistry

Mole Calculations Questions

(Atomic masses used are C = 12.0 g mol⁻¹, O = 16.0 g mol⁻¹, H = 1.01 g mol⁻¹, Cu = 63.5 g mol⁻¹, Br = 79.9 g mol⁻¹, Fe = 55.8 g mol⁻¹, N = 14.0 g mol⁻¹, S = 32.0 g mol⁻¹)

- 1. a. What is the molecular weight of methanol (CH₃OH)?b. How many moles are there in 5.0 g of methanol?
- 2. How much would 0.50 moles of CO₂ weigh?
- 3. a. Calculate the M_r of a compound if 3.0 moles of it weighed 54 g.b. What do you think this compound might be?
- 4. How many moles of CuCO₃ would weigh 9.0 g?
- 5. a. What would be the mass of 2.0 cm³ of Br₂? (Br₂ has a density of 3.1 g cm⁻³)
 b. How many moles would 2.0 cm³ of Br₂ contain?
- 6. What would be the mass of 0.25 moles of Fe?
- 7. How many moles would 3.0 g of cyclohexane (C₆H₁₂) contain?
- 8. How much would 4.00 moles of benzene weigh?
- 9. $Bu_4N^+Br^- + Br_2 \longrightarrow Bu_4N^+Br_3^$
 - a. 1.0 g of tetrabutylammonium bromide (Bu₄N⁺ Br⁻) contains how many moles?
 - b. Assuming Bu₄N⁺ Br⁻ reacts in a 1:1 ratio with Br₂, how many moles of Br₂ would you need for a complete reaction?
 - c. What volume of Br₂ would you need (Br₂ has a density of 3.10 g cm^{-3})?

Extended questions (testing other topics)

10.

- a. Give the name of the reaction mechanism and explain the role of sulfuric acid.
- b. If 6.0 g of methyl benzoate reacts with 4.0 cm³ of concentrated nitric acid (density 1.51 g cm⁻³) and 16.0 cm³ of concentrated sulfuric acid (density 1.83 g cm⁻³), what is the limiting reagent?
- c. How many moles of product would be made?
- d. What would the maximum theoretical product weigh?
- e. Give the name of the product of the reaction.
- f. Give the names of two position isomers of the product.
- 11. Ethyl ethanoate (density 0.90 g cm⁻³) is made by refluxing 6.00 g of a carboxylic acid with 6.00 g of an alcohol, in the presence of a few drops of concentrated sulfuric acid, which acts as a catalyst. At the end of the reaction 6.40 cm³ of ethyl ethanoate is formed.
 - a. Give the name of this type of reaction and define the term catalyst.
 - b. Calculate the % yield of the reaction.
 - c. Calculate the atom economy.
 - d. Explain how IR spectroscopy could be used to determine when the conversion of reactants into ethyl ethanoate is complete.