Mole Calculations Answers

- 1a. M_r of CH₃OH = 12.0 + (3 x 1.01) + 16.0 + 1.01 = 32.0 g mol⁻¹
- 1b. Moles CH_3OH = mass / M_r = 5.0 / 32.0 = 0.16 mol (Answer to 2 significant figures as mass given to 2 significant figures.)
- 2. M_r of $CO_2 = 12.0 + (16.0 \times 2) = 44.0 \text{ g mol}^{-1}$ Mass of $CO_2 = M_r \times \text{moles} = 44.0 \text{ g } \times 0.50 \text{ g mol}^{-1} = 22 \text{ g}$
- 3a. $M_r = mass / moles = 54 / 3 = 18 g mol^{-1}$
- 3b. It could be water (H₂O)
- 4. $M_r \text{ of } CuCO_3 = 108 \text{ g mol}^{-1}$ Moles of $CuCO_3 = \text{mass} / M_r = 9.0 / 124 = 0.073 \text{ mol}$ $M_r \text{ of } CuCO_3 = 63.5 + 12.0 + (3 \times 16.0) = 123.5 = 124 \text{ (to } 3 \text{ sf)}$
- 5a. Mass of Br_2 = density x volume = 3.1 x 2.0 = 6.2 g
- 5b. M_r of $Br_2 = 160 \text{ g mol}^{-1}$ Moles of $Br_2 = \text{mass} / M_r = 6.2 / 160 = 0.039 \text{ mol}$
- 6. Mass of Fe = moles $x M_r = 0.25 x 55.8 = 14 g$
- 7. Moles of cyclohexane = mass / M_r = 3.0 / 84.1 = 0.036 mol M_r of cyclohexane (C₆H₁₂) = (6 x 12.0) + (12 x 1.01) = 84.1
- 8. Mass benzene = moles x M_r = 4.00 x 78.1 = 312 g M_r of benzene (C₆H₆) = (6 x 12.0) + (6 x 1.01) = 78.1

- 9a. Moles of tetrabutylammonium bromide $(Bu_4N^+ Br^-) = mass / M_r$ = 1.0 / 322 = 0.0031 mol M_r of $Bu_4N^+ Br^- (C_{16}H_{36}BrN) = (16 \times 12.0) + (36 \times 1.01) + 79.9 + 14.0 = 322$
- 9b. $0.0031 \text{ moles of } Br_2$
- 9c. Mass Br_2 = moles x M_r = 0.0031 x 160 = 0.496 = 0.50 g Volume = mass / density = 0.50 / 3.10 = 0.16 cm⁻³
- 10a. Electrophilic substitution. Sulfuric acid protonates nitric acid to form, on loss of water, the nitronium ion (a strong electrophile):

 $HO-NO_2 + H^+ \rightarrow H_2O^+-NO_2 \rightarrow H_2O + ^+NO_2$

10b. Moles added:

methyl benzoate ($C_8H_8O_2$) M_r = (8 x 12.0) + (8 x 1.01) + (2 x 16.0) = 136 Moles = mass / M_r = (6.0 / 136) = 0.044 mol

nitric acid (HNO₃) Mass = volume x density = $4.0 \times 1.51 = 6.0 \text{ g}$ M_r = $1.01 + 14.0 + (3 \times 16.0) = 63.0$ Moles = mass / M_r = (6.0 / 63.0) = 0.095 mol

sulfuric acid (H₂SO₄) Mass = volume x density = $16.0 \times 1.83 = 29.3 \text{ g}$ M_r = $(2 \times 1.01) + 32.0 + (4 \times 16.0) = 98.0$ Moles = mass / M_r = (29.3 / 98.0) = 0.299 mol

Methyl benzoate is the limiting reagent as there are only 0.044 mol of it

- 10c. 0.044 moles of product could be made
- 10d. Theoretical mass of product = $M_r x$ moles = 181 x 0.044 = 7.96 = 8.0 g methyl 3-nitrobenzoate (C₈H₇NO₄) $M_r = (8 x 12.0) + (7 x 1.01) + 14.0 + (4 x 16.0) = 181$

10e. Methyl 3-nitrobenzoate

10f. Methyl 2-nitrobenzoate and methyl 4-nitrobenzoate

11a. An esterification reaction

A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the reaction

11b. Mass of ethyl ethanoate formed = volume x density = 6.40 x 0.90 = 5.76 g

 $CH_3CO_2H + CH_3CH_2OH \rightarrow CH_3CO_2CH_2CH_3 + H_2O$

The carboxylic acid is ethanoic acid (CH₃CO₂H) $M_r = (12.0 \times 2) + (4.0 \times 1.01) + (2 \times 16.0) = 60.0$ Moles = mass / $M_r = (6.0 / 60.0) = 0.10$ mol

The alcohol is ethanol (CH₃CH₂OH) M_r = (12.0 x 2) + (6.0 x 1.01) + 16.0 = 46.1 Moles = mass / M_r = (6.0 / 46.1) = 0.13 mol

Ethanoic acid is the limiting reagent as there are only 0.10 mol of it

Theoretical mass of ester = $M_r x$ moles = 88.1 x 0.10 = 8.81 g M_r of ester (CH₃CO₂CH₂CH₃) = (4 x 12.0) + (8 x 1.01) + (2 x 16.0) = 88.1

% yield = actual yield / theoretical yield x 100 % yield = 5.76 g / 8.81 g x 100 = 65.4% (to 1 dp, 3 sf) = 65% (rounding up)

- 11c. Atom economy = M_r of desired product / combined M_r of all reactants x 100 88.1 / (60.0 + 46.1) x 100 = 83.0% (to 1 dp, 3 sf) = 83% (rounding up) (Note: 17% will be wasted)
- 11d. Conversion of RCO₂H into RCO₂R leads to a change in the wavenumber of the intense C=O stretching vibration, from around 1710 cm⁻¹ for RCO₂H to around 1740 cm⁻¹ for RCO₂R. The peak intensities at 1710 cm⁻¹ and 1740 cm⁻¹ can be used to monitor the progress of the reaction.