

Enthalpy Questions

1. Given that:

 $CH_4(g) \longrightarrow C(s) + 2 H_2(g) \quad \Delta H_r = 74.8 \text{ kJ mol}^{-1}$

What is the ΔH_f of CH₄ (g)?

- 2. Calculate the ΔH_f of methane (CH₄ (g)), using the following ΔH_C data: CH₄ (g) = -882 kJ mol⁻¹; C (s) = -394 kJ mol⁻¹; H₂ (g) = -286 kJ mol⁻¹
- 3. Calculate the $\Delta H_{\rm C}$ of propane (C₃H₈ (g)), given the following:

 C_3H_8 (g) = -104 kJ mol⁻¹; CO_2 (g) = -394 kJ mol⁻¹; H₂O (I) ΔH_f = -286 kJ mol⁻¹

4. Calculate the ΔH_f of ethanol (C₂H₅OH (I)), given the following:

 ΔH_c of C₂H₅OH (I) = -1371 kJ mol⁻¹ C (s) = -394 kJ mol⁻¹ H₂(g) = -286 kJ mol⁻¹

5. Given the bond enthalpies:

 $C-C = 348 \text{ kJ mol}^{-1}$; $C-H = 412 \text{ kJ mol}^{-1}$; $O=O = 496 \text{ kJ mol}^{-1}$; $C-O = 336 \text{ kJ mol}^{-1}$; $C=O = 743 \text{ kJ mol}^{-1}$; $O-H = 463 \text{ kJ mol}^{-1}$

Find the ΔH_r of the following reaction:

 $CH_{3}COOH (I) + 3O_{2} (g) \longrightarrow 2 CO_{2} (g) + 2 H_{2}O (I)$

6. Given the following:

 ΔH_{C} of maltose (C₁₂H₂₂O₁₁ (s)) = -5670 kJ mol⁻¹

Calculate the ΔH_C of glucose (C₆H₁₂O₆ (s)):

 $2 C_6 H_{12}O_6 (s) \longrightarrow C_{12}H_{22}O_{11} (s) + H_2O (l) \Delta H_r = +54 \text{ kJ mol}^{-1}$

