Mathematical modelling of random multicomponent systems
A joint research group.
The main aim of our research is to develop mathematical framework for the study of a class of stochastic systems of a large number of elements (called "particles") described by their "positions" and "marks" (representing internal structure of the corresponding particles). The particles are coupled via (random) interaction potentials.
Examples of systems of such type can be found in a wide variety of sciences, including quantum physics, astrophysics, chemical physics, biology, ecology, computer science, economics, finance, etc.
Participating institutions: University of York, University of Wales-Swansea, University of Reading, University of Durham.
Participating researchers: Dr Alex Daletskii, Professor Kasia Rejzner (York), Professor Eugene Lytvynov, Dr Dmitri Finkelshtein (Swansea), Dr Tobias Kuna (Reading), Dr Ostap Hryniv (Durham).
PhD students: Tayfun Kok, Georgy Chargazia, Habeebat Ibraheem, Maryam Alshehri, Adam Barker, Joey McMillan
International collaboration: Professor Yuri Kondratiev, Dr Tanja Pasurek, Dr Oles Kutovyi (Bielefeld), Dr Maria Infusino (Konstanz), Professor Yuri Kozitsky (Lublin), Dr Diana Conache (Muenchen)
D. Conache, Y. Kondratiev, E. Lytvynov: Equilibrium diffusion on the cone of discrete Radon measures, arXiv:1503.04166, to appear in Potential Analysis
Y. Kondratiev, E. Lytvynov, A. Vershik: Laplace operators on the cone of Radon measures, arXiv:1503.00750, to appear in J. Funct. Anal.
Y. Kondratiev, T. Kuna, E. Lytvynov: A moment problem for random discrete measures, Stochastic Process. Appl. 125 (2015), 3541-3569
D. Conache, A. Daletskii, Yu. Kondratiev, T. Pasurek: Gibbs Measures on Marked Configuration Spaces: Existence and Uniqueness, arXiv:1503.06349 [math-ph] (2015).
A. Daletskii, Yu. Kondratiev, Yu. Kozitsky: Phase Transitions in Continuum Ferromagnets with Unbounded Spins, arXiv:1503.07010 [math-ph] (2015).
A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek: Phase Transitions in a quenched amorphous ferromagnet, J. Stat. Phys. (2014) 156:156—176.
A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek: Gibbs states on random configurations (with Yu. Kondratiev, Yu. Kozitsky, T. Pasurek), J. Math. Phys. 55, 083513 (2014).
Finkelshtein, D. Around Ovsyannikov's method. Methods of Functional Analysis and Topology, (2015) 21(2), 134-150.
Finkelshtein, D., Kondratiev, Y., Kozitsky, Y. Kutoviy, O. The statistical dynamics of a spatial logistic model and the related kinetic equation. Mathematical Models and Methods in Applied Sciences, (2015) 25(02), 343-370, doi:10.1142/S0218202515500128
Finkelshtein, D., Kondratiev, Y., Kutoviy, O. Oliveira, M. Dynamical Widom–Rowlinson Model and its Mesoscopic Limit. Journal of Statistical Physics, (2015) 158(1), 57-86, doi:10.1007/s10955-014-1124-6
D. Finkelshtein: International Conference "Micro and Macro Systems in Life Sciences", Bedlewo, Poland, April 8-13, 2015. Talk: "Nonlocal Kinetic Equations derived from Stochastic Dynamics of Complex Systems"
Wales Mathematics Colloquium, Gregynog, U.K., May 18-20, 2015 Talk: "Self-Aggregation and Expansion in a Spatial Stochastic Evolution"
International Conference "Probability, Reliability and Stochastic Optimization", Kyiv, Ukraine, April 7-10, 2015. Plenary Talk: "Statistical Description for Spatial Stochastic Dynamics: an Overview"
E. Lytvynov: Analysis on the cone of discrete Radon measures, Mini-course within the International Programme for Studies in Computer Science and Mathematics Applied to Business, Wroclaw University, May 2015
Noncommutative Meixner-type orthogonal polynomials for anyon statistics, International Conference on Quantum Probability and Related Topics, ICM2014 satellite conference, Chungbuk National University, Korea, August 2014
Laplace operators on the cone of Radon measures, Complex Systems of Interacting Particles, Workshop, Bielefeld, May 2014