%
LaTeX source for How to distinguish between plane symmetries\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \renewcommand{\Pr}{\mbox{$\mathsf P$}} \newcommand{\E}{\mbox{$\mathsf E$}} \newcommand{\Var}{\mbox{$\mathcal V$}} \newcommand{\Cov}{\mbox{$\mathcal C$}} \newcommand {\half}{\mbox{$\frac{1}{2}$}} \newcommand{\est}{\widehat} % Set up for reference list \newcommand{\hi}{\par\noindent\hangindent=1em} \begin{document} \thispagestyle{empty} {\small \begin{center} {\Large \textbf{HOW TO DISTINGUISH BETWEEN}} \smallskip {\Large \textbf{PLANE SYMMETRIES}} \bigskip {\Large Recognition Chart for Plane Periodic Patterns} \end{center} \begin{center} \renewcommand{\arraystretch}{1.25} \hspace*{-1cm} \begin{tabular}{lllrrll} && \multicolumn{1}{c}{Highest} & \multicolumn{1}{c}{Non-trivial} && \multicolumn{1}{c}{Helpful} \\ && \multicolumn{1}{c}{Order} & \multicolumn{1}{c}{Glide} & \multicolumn{1}{c}{Generating} & \multicolumn{1}{c}{Distinguishing} \\ \multicolumn{1}{c}{Type} & \multicolumn{1}{c}{Lattice} & \multicolumn{1}{c}{Rotation} & \multicolumn{1}{c}{Reflections} & \multicolumn{1}{c}{Region} & \multicolumn{1}{c}{Properties} \\ \hline p1 & parallelogram & 1 & no & no & 1 unit \\ p2 & parallelogram & 2 & no & no & 1/2 unit \\ pm & parallelogram & 1 & yes & no & 1/2 unit \\ pg & rectangular & 1 & no & yes & 1/2 unit \\ cm & rhombic & 1 & yes & yes & 1/2 unit \\ pmm & rectangular & 2 & yes & no & 1/4 unit \\ pmg & rectangular & 2 & yes & yes & 1/4 unit & parallel \\ & & & & & & reflection axes \\ pgg & rectangular & 2 & no & yes & 1/4 unit \\ cmm & rhombic & 2 & yes & yes & 1/4 unit & perpendicular \\ & & & & & & reflection axes \\ p4 & square & 4 & no & no & 1/4 unit \\ p4m & square & 4 & yes & yes & 1/4 unit & 4-fold centres \\ & & & & & & on reflection axes \\ p4g & square & 4 & yes & yes & 1/4 unit & 4-fold centres \textit{not} \\ & & & & & & on reflection axes \\ p3 & hexagonal & 3 & no & no & 1/3 unit \\ p3m1 & hexagonal & 3 & yes & yes & 1/6 unit & all 3-fold centres \\ & & & & & & on reflection axes \\ p31m & hexagonal & 3 & yes & yes & 1/6 unit & \textit{not} all 3-fold centres \\ & & & & & & on reflection axes \\ p6 & hexagonal & 6 & no & no & 1/6 unit \\ p6m & hexagonal & 6 & yes & yes & 1/12 unit \\ \end{tabular} \end{center} \noindent Notes: \renewcommand{\labelenumi}{(\theenumi)} \begin{enumerate} \item A rotation through an angle of $360^{\circ}/n$ is said to have order $n$. A glide-reflection is non-trivial if its component translation and reflection are not symmetries of the pattern. \item A smallest region of the plane having the property that the set of its images under the translation group covers the plane is called a unit of the pattern. \item A generating region is a smallest region whose images under the full symmetry group of the pattern cover the plane. \end{enumerate} } \end{document} %