%
LaTeX source for matrix derivation of sums of powers of integers\documentclass{article} \usepackage{amstex} \usepackage{amssymb} \usepackage{times} \begin{document} \begin{center} {\large \textbf{MATRIX DERIVATION OF $\sum n^k$}} \end{center} \bigskip \noindent Consider the formulae \begin{align*} 2^4-1^4&=1+4.1+6.1^2+4.1^3\\ 3^4-2^4&=1+4.2+6.2^2+4.2^3\\ 4^4-3^4&=1+4.3+6.3^2+4.3^3\\ &\vdots\\ n^4-(n-1)^4&=1+4.(n-1)+6.(n-1)^2+4.(n-1)^3. \end{align*} By addition we see that \[ n^4=n+4S_1(n-1)+3+6S_2(n-1)+4S_3(n-1) \] where \[ S_r(n)=\sum_{i=1}^ni^r \] and similarly we get the general result \[ n^r=n+{r\choose 1}S_1(n-1)+{r\choose r-2}S_2(n-1)+\dots+ \binom{r}{r-1}S_{r-1}(n-1). \] The equations \begin{align*} n&=n\\ n^2&=n+S_1(n-1)\\ n^3&=n+3S_1(n-1)+3S_2(n-1)\\ n^4&=n+4S_1(n-1)+6S_2(n-1)+4S_3(n-1)\\ n^5&=n+5S_1(n-1)+10S_2(n-1)+10S_3(n-1)+5S_4(n-1)\hbox{, etc.} \end{align*} can be written in matrix form as \[ \left(\begin{array}{c}n\\ n^2\\ n^3\\ n^4\\ n^5\\ \vdots\end{array}\right) =\left(\begin{array}{ccccccc} 1&0&0&0&0&0&\dots\\ 1&2&0&0&0&0&\dots\\ 1&3&3&0&0&0&\dots\\ 1&4&6&4&0&0&\dots\\ 1&5&10&10&5&1&\dots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\ddots \end{array}\right) \left(\begin{array}{c} n\\ S_1(n-1)\\ S_2(n-1)\\ S_3(n-1)\\ S_4(n-1)\\ \vdots \end{array}\right) \] Since this matrix of coefficients is triangular, it may be readily inverted to give \[ \left(\begin{array}{c} n\\ S_1(n-1)\\ S_2(n-1)\\ S_3(n-1)\\ S_4(n-1)\\ \vdots \end{array}\right) =\left(\begin{array}{cccccc} 1&0&0&0&0&\dots\\ -1/2&1/2&0&0&0\\ 1/6&-1/2&1/3&0&0&\dots\\ 0&1/4&-1/2&1/4&0&\dots\\ -1/30&0&1/3&-1/2&1/5&\dots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots \end{array}\right) \left(\begin{array}{c} n\\ n^2\\ n^3\\ n^4\\ n^5\\ \vdots \end{array}\right). \] To obtain the sums to $n$ terms instead of $n-1$ we use $S_r(n)=S_r(n-1)+n^r$, which has the effect of adding 1\textit{s} to the numbers immediately below the main diagonal of the matrix, turning each $-1/2$ into $1/2$. The final result is then \[ \left(\begin{array}{c} n\\ S_1(n)\\ S_2(n)\\ S_3(n)\\ S_4(n)\\ \vdots \end{array}\right) =\left(\begin{array}{cccccc} 1&0&0&0&0&\dots\\ 1/2&1/2&0&0&0&\dots\\ 1/6&1/2&1/3&0&0&\dots\\ 0&1/4&1/2&1/4&0&\dots\\ -1/30&0&1/3&1/2&1/5\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots \end{array}\right) \left(\begin{array}{c} n\\ n^2\\ n^3\\ n^4\\ n^5\\ \vdots \end{array}\right). \] The numbers in the first column of this matrix are known as the ``Bernoulli numbers''. \begin{flushright} P.M.L. \end{flushright} \end{document} %