LaTeX source for Answers to Bayesian Statistics: An Introduction (4th edn)
\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} % Define digitwidth (TeXbook p. 241) \newdimen\digitwidth \setbox0=\hbox{\rm0} \digitwidth=\wd0 % Set up for reference list \newcommand{\hi}{\par\noindent\hangindent=1em} \begin{document} \begin{center} \textbf{6. A HIERARCHICAL MODEL} \end{center} Applications of hierarchical models of the kind introduced by Lindley and Smith (1972) abound in fields as diverse as educational testing (Rubin 1981), cancer studies (DuMouchel and Harris 1983), and biological growth curves (Strenio, Weisberg, and Bryk 1983). However, both Bayesian and empirical Bayesian models are typically forced to invoke a number of approximations, whose consequences are often unclear under the multiparameter likelihoods induced by the modelling. See, for example, Morris (1983), Racine-Poon (1985), and Racine-Poon and Smith (1990) for details of some approaches to to implementing hierarchical model analysis. By contrast, a full implementation of the Bayesian approach is easily achieved using the Gibbs sampler, at least for the widely used normal hierarchical model structure. For illustration, we focus on the following population grown problem. In a study conducted by the CIBA-GEIGY company, the weights of 30 young rats in a control group were meassured weekly for five weeks. The data are given in Table 3, with weight measurements available for all five weeks. Later we discuss the substantive problem of comparison with data from a treatment group. Initially, however, we shall focus attention on the control group in order to illustrate the Gibbs sampling methodology. \begin{center} \textit{Table 3. Rat Population Growth Data: Control Group} \end{center} {\catcode`?=\active \def?{\kern\digitwidth} \small \[ \begin{array}{cccccccccccc} \text{Rat$\backslash$Week}&1&2&3&4&5&\text{Rat$\backslash$Week}&1&2&3&4&5 \\ ?1\qquad& 151&199&246&283&320& 16\qquad& 160&207&248&288&324 \\ ?2\qquad& 145&199&249&293&354& 17\qquad& 142&187&234&280&316 \\ ?3\qquad& 147&214&263&312&328& 18\qquad& 156&203&243&283&317 \\ ?4\qquad& 155&200&237&272&297& 19\qquad& 157&212&259&307&336 \\ ?5\qquad& 135&188&230&280&323& 20\qquad& 152&203&246&286&321 \\ ?6\qquad& 159&210&252&298&331& 21\qquad& 154&205&253&298&334 \\ ?7\qquad& 141&189&231&275&305& 22\qquad& 139&190&225&267&302 \\ ?8\qquad& 159&201&248&297&338& 23\qquad& 146&191&229&272&302 \\ ?9\qquad& 177&236&285&340&376& 24\qquad& 157&211&250&285&323 \\ 10\qquad& 134&182&220&260&296& 25\qquad& 132&185&237&286&331 \\ 11\qquad& 160&208&261&313&352& 26\qquad& 160&207&257&303&345 \\ 12\qquad& 143&188&220&273&314& 27\qquad& 169&216&261&295&333 \\ 13\qquad& 154&200&244&289&325& 28\qquad& 157&205&248&289&316 \\ 14\qquad& 171&221&270&326&358& 29\qquad& 137&180&219&258&291 \\ 15\qquad& 163&216&242&281&312& 30\qquad& 153&200&244&286&324 \end{array} \] NOTE: $x_{i1}=8$, $x_{i2}=15$, $x_{i3}=22$, $x_{i4}=29$, $x_{i5}=36$ days; $i=1, ..., 30$. } \medskip For the time period considered, it is reasonable to assume individual straight-line growth curves, although non-linear curves can be handled as well. We also assume homoscedastic normal measurement errors (nonhomogeneous varianes can be accommodated as in the previous section), so that \[ Y_{ij} \sim N(\alpha_i+\beta_ix_{ij},\sigma_c^2),\ i=1, ..., k;\ j=1, ..., n_i, \] provides the full measurement model (with $k=30$, $n_i=5$, and $x_{ij}$ denoting the age in days of the $i$th rate when measurement $j$ was taken). The population structure is modeled as \[ \left(\begin{array}{c}\alpha_i \\ \beta_i\end{array}\right) \sim N\left\{\left(\begin{array}{c}\alpha_c \\ \beta_c\end{array}\right), \Sigma_c\right\},\qquad i=1, ..., k, \] assuming independence throughout. A full Bayesian analysis now requires the specification of a prior for $\sigma_c^2$, $\mu_c=(\alpha_c,\beta_c)^T$, and $\Sigma_c$. Typical inferences of interest in such studies include marginal posteriors for the population parameters $(\alpha_c,\beta_c)$ and predictive intervals for individual future growth given the first-week measurement. We shall see that these are easily obtained using the Gibbs sampler. For the prior specification, we assume independence, as is customary, taking \[ [\mu_c,\Sigma_c^{-1},\sigma_c^2] = [\mu_c][\Sigma_c^{-1}][\sigma_c^2] \] to have a normal-Wishart-inverse-gamma form: \begin{align*} [\mu_c] &= N(\eta,C), \\ [\Sigma_c^{-1}] &= W((\rho R)^{-1},\rho), \\ [\sigma_c^2] &= IG\left(\frac{\nu_0}{2}, \frac{\nu_0\tau_0^2}{2} \right). \end{align*} Rewriting the measurement model for the $i$th individual as $Y_i \sim N(X_i\theta,\sigma_c^2I_{n_i})$ where $\theta_i=(\alpha_i,\beta_i)^T$ and $X_i$ denotes the appropriate design matrix and defining \begin{align*} Y &= (Y_1, ...,Y_k)^T,\quad \overline\theta=k^{-1}\sum_{i=1}^k\theta_i, \quad n=\sum_{i=1}^k n_i, \\ D_i &= \sigma_c^{-1}X_i^TX_i + \Sigma_c^{-1}, \\ V &= (k\Sigma_c^{-1} + C^{-1})^{-1}, \end{align*} the Gibbs sampler for $\theta=(\theta_1, ..., \theta_k)$, $\Sigma_c$, and $\sigma_c^2$ (a total of 66 parameters in the above example) is straightforwardly seen to be specified by the conditional distributions \begin{align*} [\theta_i\,|\,Y,\mu_c,\Sigma_c^{-1},\sigma_c^2] &= N\{D_i(\sigma_c^{-2}X_i^TY_i + \Sigma_c^{-1}\mu_c),\ D_i\},\quad i=1, ..., k \\ [\mu_c\,|\,Y,\{\theta\},\Sigma_c^{-1},\sigma_c^2] &= N\{V(k\Sigma_c^{-1}\overline\theta + C^{-1}\eta),\ V\}, \\ [\Sigma_c^{-1}\,|\,Y,\{\theta\},\mu_c,\sigma_c^2] &= W\left\{\left[\sum_i(\theta_i-\mu_c)(\theta_i-\mu_c)^T + \rho R\right]^{-1},\ k+\rho\right\}, \\ [\sigma_c^2\,|\,Y,\{\theta\},\mu_c,\Sigma_c^{-1}] &= IG\left(\frac{n+\nu_0}{2},\ \frac{1}{2}\left[\sum_i(Y_i-X_i\theta_i)^T(Y_i-X_i\theta_i) + \nu_0\tau_0^2\right]\right)\hfill(5) \end{align*} For the analysis of the rat growth data given above, the hyperparameter specification was defined by \[ C^{-1}=0,\quad \nu_0=0,\quad p=2,\quad R=\left(\begin{array}{cc}100 & 0 \\ 0 & 0.1\end{array}\right), \] [because $C^{-1}=0$ the value of $\eta$ disappears entirel from the full conditionals] reflecting rather vague initial information relative to that to be provided by the data. Simulation from the Wishart distribution for the $2\times2$ matrix $\Sigma_c^{-1}$ is easily accomplished using the algorithm of Odell and Feiveson (1966): with $G(\cdot,\cdot)$ denoting gamma distributions, draw independently from \begin{align*} [U_1] &= G\left(\frac{\nu}{2},\frac{1}{2}\right), \\ [U_2] &= G\left(\frac{\nu-1}{2},\frac{1}{2}\right), \intertext{and} [N] &= N(0,1); \end{align*} set \[ W = \left[\begin{array}{cc}U_1 & N\sqrt{U_1} \\ N\sqrt{U_1} & U_2+N^2\end{array}\right]; \] then if $S^{-1}=(H^{1/2})^T(H^{1/2})$, \[ \Sigma_c^{-1}=(H^{1/2})^TW(H^{1/2}) \sim W(S^{-1},\nu). \] The iterative process was monitored by observing empirical \textit{Q--Q} plots for successive samples from $\alpha_c$, $\beta_c$, $\sigma_c^2$, and the eigenvalues of $\Sigma_c^{-1}$. Though the $\alpha_i$ and $\beta_i$ are of less interest, spot checking revealed satisfactory convergence, not surprising in view of (5), which suggests that convergence for the $\theta_i$ is comparable to that of $\mu_c$. For the data set summarized in Table 3, convergence was achieved with about 35 cycles of $m=50$ drawings. \begin{center} \textbf{REFERENCES} \end{center} \hi DuMouchel, W.~H., and Harris, J.~E.\ (1983), ``Bayes methods for Combining the Results of Cancer studies in Humans and Other Species'' (with discussion), \textit{Journal of the American Statistical Association}, 78, 293--305. \hi Lindley, D.~V., and Smith, A.~F.~M.\ (1972), ``Bayes Estimates for the Linear Model'' (with discussion), \textit{Journnal of the Royal Statistical Society}, Ser. B, 34, 1--41. \hi Morris, C.\ (1983), ``Parametric Empirical bayes Inference: Theory and Applications,'' \textit{Journal of the American Statistical Association}, 78, 47--59. \hi Odell, P.~L., and Feiveson, A.~H. (1966), ``A Numerical Procedure to Generate a Sample Covariance Matrix,'' \textit{Journal of the American Statistical Association}, 61, 198--203. \hi Racine-Poon, A.\ (1985), ``A Bayesian Approach to Non-linear Random Effects Models, \textit{Biometrics}, 41, 1015--1024. \hi Racine-Poon, A., and Smith, A.~F.~M.\ (1990), ``Population Models,'' in \textit{Statistical Methodology in the Pharmaceutical Sciences}, ed.\ D.\ Berry, New York: Marcel Dekker. \hi Rubin, D.~B.\ (1981), ``Estimation in Parallel Randomized Experiments, \textit{Journal of Educational Statistics}, 6, 377--401. \hi Strenio, J.~F., Weisberg, H.~I., and Bryk, A.~S.\ (1983), ``Empirical Bayes Estimation of Individual Growth-Curve Parameters and Their Relationship to Covariates, \textit{Biometrics}, 39, 71--86. \bigskip\bigskip\bigskip \noindent Taken from ``Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling'', Alan E.~Gelfand, Susan E.~Hills, Amy Racine-Poon, and Adrian F.~M.~Smith, \textit{Journal of the American Statistical Association} \textbf{85} (412) (1990), 972--985, Section 6, pp.\ 978--979. See also B.~P.~Carlin and T.~A.~Louis, \textit{Bayes and Empirical Bayes Methods for Data Analysis (2nd edn)}, Chapman and Hall 2000, pp. 148-149. \end{document} %