% LaTeX source for Misprints and Errors in 4th edn of Bayesian Statistics: An Introduction

\documentclass[oneside]{book}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{makeidx}
\usepackage{epsf}
\usepackage{graphicx}
\usepackage{comment}

\setcounter{secnumdepth}{1}

\setcounter{tocdepth}{1}

% Set up environment for exercises at ends of chapters
\newcounter{qno}
\newcommand{\startqs}{\setcounter{qno}{0}\vspace{-1.5\baselineskip}}
\newcommand{\nextq}
    {\vspace{1.5\baselineskip}\noindent\addtocounter{qno}{1}\arabic{qno}.\quad}

% Allow for blank lines
\newcommand{\blankline}{\vspace{\baselineskip}\noindent}

% Define digitwidth and dotwidth (TeXbook p. 241)
\newdimen\digitwidth
\setbox0=\hbox{\rm0}
\digitwidth=\wd0
\newdimen\dotwidth
\setbox0=\hbox{\rm.}
\dotwidth=\wd0

% Notation for vectors, matrices, estimates, random variables and sample means
\newcommand{\vect}{\boldsymbol}
\newcommand{\matr}{\boldsymbol}
\newcommand{\est}{\widehat}
\newcommand{\random}{\widetilde}
\newcommand{\mean}{\overline}

% Notation for dots in subscripts
\newcommand {\bdot}{\hbox{\Huge .}}
\newcommand {\dotdot}{{\hbox{\Huge .}\kern-0.1667em\hbox{\Huge .}}}
\newcommand {\onedot}{1\kern-0.1667em\bdot}
\newcommand {\twodot}{2\kern-0.1667em\bdot}
\newcommand {\idot}{i\kern-0.1667em\bdot}
\newcommand {\jdot}{j\kern-0.1667em\bdot}
\newcommand {\mdot}{m\kern-0.1667em\bdot}
\newcommand {\dotj}{\kern-0.1667em\bdot\kern-0.1667em j}

% Define sech, arc sin and arc cos
\newcommand{\sech}{\operatorname{sech}}
\renewcommand{\arcsin}{\operatorname{arc\,sin}}
\renewcommand{\arccos}{\operatorname{arc\,cos}}

% Define Probability, Expectation, Variance, Covariance, Median, Mode
\renewcommand{\Pr}{\mbox{$\mathsf P$}}
\newcommand{\E}{\mbox{$\mathsf E$}}
\newcommand{\Var}{\mbox{$\mathcal V$}}
\newcommand{\Cov}{\mbox{$\mathcal C$}}
\newcommand{\median}{\mbox{median\,}}
\newcommand{\mode}{\mbox{mode\,}}

% Define notation for evidence
\newcommand{\Ev}{\mbox{Ev}}

% Define small common fractions for use in display formulae
\newcommand{\half}{\mbox{$\frac{1}{2}$}}
\newcommand{\smallhalf}{\mbox{\small$\frac{1}{2}$}}
\newcommand{\quarter}{\mbox{$\frac{1}{4}$}}
\newcommand{\third}{\mbox{$\frac{1}{3}$}}
\newcommand{\twothirds}{\mbox{$\frac{2}{3}$}}
\newcommand{\ninth}{\mbox{$\frac{1}{9}$}}

% Alternative notation for fractions (TeXbook, exercise 11.6)
\newcommand{\slopefrac}[2]{\leavevmode\kern.1em
\raise .5ex\hbox{\the\scriptfont0 #1}\kern-.1em
/\kern-.15em\lower .25ex\hbox{\the\scriptfont0 #2}}

% Notation for beta funcion
\newcommand{\Betafn}{\mbox{B}}

% Define names of distributions
\newcommand{\N}{\mbox{N}}              % A.1
\newcommand{\G}{\mbox{G}}              % A.4
\newcommand{\Ex}{\mbox{E}}             % A.4
\renewcommand{\t}{\mbox{t}}            % A.8
\newcommand{\Be}{\mbox{Be}}            % A.10
\newcommand{\B}{\mbox{B}}              % A.11
\renewcommand{\P}{\mbox{P}}            % A.12
\newcommand{\NB}{\mbox{NB}}            % A.13
\renewcommand{\H}{\mbox{H}}            % A.14
\newcommand{\U}{\mbox{U}}              % A.15
\newcommand{\UD}{\mbox{UD}}            % A.15
\newcommand{\Pa}{\mbox{Pa}}            % A.16
\newcommand{\Pabb}{\mbox{Pabb}}        % A.16
\newcommand{\M}{\mbox{M}}              % A.17
\newcommand{\BF}{\mbox{BF}}            % A.18
\newcommand{\F}{\mbox{F}}              % A.19
\newcommand{\z}{\mbox{z}}              % A.20
\newcommand{\C}{\mbox{C}}              % A.21

% Define some common bold symbols
\newcommand{\bbeta}{\mbox{$\boldsymbol\beta$}}
\newcommand{\beeta}{\mbox{$\boldsymbol\eta$}}
\newcommand{\btheta}{\mbox{$\boldsymbol\theta$}}
\newcommand{\bkappa}{\mbox{$\boldsymbol\kappa$}}
\newcommand{\blambda}{\mbox{$\boldsymbol\lambda$}}
\newcommand{\bmu}{\mbox{$\boldsymbol\mu$}}
\newcommand{\btau}{\mbox{$\boldsymbol\tau$}}
\newcommand{\bzero}{\mbox{$\boldsymbol0$}}

% Further bold symbols for use in connection with hierachical models
\newcommand {\bpiem}{\mbox{\boldmath $\pi^{EM}$}}
\newcommand {\bhtheta}{\mbox{\boldmath $\est\theta$}}
\newcommand {\bhthetao}{\mbox{\boldmath $\est\theta^{\mbox{\scriptsize\it0}}$}}
\newcommand {\bhthetajs}{\mbox{\boldmath $\est\theta^{JS}$}}
\newcommand {\bhthetajsplus}{\mbox{\boldmath $\est\theta^{JS^{{}_+}}$}}
\newcommand {\bhthetaem}{\mbox{\boldmath $\est\theta^{EM}$}}
\newcommand {\bhthetab}{\mbox{\boldmath $\est\theta^{B}$}}
\newcommand {\bhthetaeb}{\mbox{\boldmath $\est\theta^{EB}$}}
\newcommand {\thetabar}{\mbox{$\mean\theta$}}
\newcommand {\bphi}{\mbox{\boldmath $\phi$}}
\newcommand {\BPhi}{\mbox{\boldmath $\Phi$}}
\newcommand {\bpsi}{\mbox{\boldmath $\psi$}}
\newcommand {\BPsi}{\mbox{\boldmath $\Psi$}}
\newcommand {\BSigma}{\mbox{\boldmath $\Sigma$}}

% Define transpose for matrix theory
\newcommand{\transpose}{\mbox{${}^{\text{T}}$}}

% Define differentials with roman d and thin space before
\renewcommand{\d}{\mbox{d}}
\newcommand{\dF}{\,\mbox{\d$F$}}
\newcommand{\dt}{\,\mbox{\d$t$}}
\newcommand{\du}{\,\mbox{\d$u$}}
\newcommand{\dU}{\,\mbox{\d$U$}}
\newcommand{\dx}{\,\mbox{\d$x$}}
\newcommand{\dbx}{\,\text{\d$\vect x$}}
\newcommand{\dy}{\,\text{\d$y$}}
\newcommand{\dby}{\,\text{\d$\vect y$}}
\newcommand{\dz}{\,\mbox{\d$z$}}
\newcommand{\dgamma}{\,\mbox{\d$\gamma$}}
\newcommand{\dzeta}{\,\mbox{\d$\zeta$}}
\newcommand{\deta}{\,\mbox{d$\eta$}}
\newcommand{\dtheta}{\,\mbox{\d$\theta$}}
\newcommand{\dbtheta}{\,\mbox{\d$\boldsymbol\theta$}}
\newcommand{\dkappa}{\,\mbox{\d$\kappa$}}
\newcommand{\dlambda}{\,\mbox{\d$\lambda$}}
\newcommand{\dLambda}{\,\mbox{\d$\Lambda$}}
\newcommand{\dmu}{\,\mbox{\d$\mu$}}
\newcommand{\dbmu}{\,\mbox{\d$\bmu$}}
\newcommand{\drho}{\,\mbox{\d$\rho$}}
\newcommand{\dpi}{\,\mbox{\d$\pi$}}
\newcommand{\dxi}{\,\mbox{\d$\xi$}}
\newcommand{\dphi}{\,\mbox{\d$\phi$}}
\newcommand{\dpsi}{\,\mbox{\d$\psi$}}
\newcommand{\domega}{\,\mbox{\d$\omega$}}

% Hyp for hypothesis
\newcommand{\Hyp}{\mbox{H}}

% Blackboard bold Z for the integers
\newcommand{\Z}{\mbox{$\mathbb Z$}}

% Script X for a set of possible observations
\newcommand{\X}{\mbox{$\mathcal X$}}

% EM, GEM, E-step and M-step for the EM algorithm
\newcommand{\EM}{\mbox{\textit{EM}\ }}
\newcommand{\GEM}{\mbox{\textit{GEM}\ }}
\newcommand{\Estep}{\mbox{\textit{E}-step\ }}
\newcommand{\Mstep}{\mbox{\textit{M}-step\ }}

% Omit the word Chapter at the start of chapters
\renewcommand{\chaptername}{}

% Set up for reference list
\newcommand{\hi}{\par\noindent\hangindent=1em}

\begin{document}

\begin{comment}

\thispagestyle{empty}
\begin{center}

  \bigskip\bigskip

  {\Huge{\textbf{Bayesian Statistics:}}}\\
  
  \bigskip

  {\LARGE{\textbf{An Introduction}}}\\

  \vspace{0.5in}

  {\Large{\textbf{Fourth Edition}}}\\

  \vspace{0.75in}

  {\Large{\textbf{Peter M. Lee}}}\\
  \vspace{3 mm}
  {\Large{\textit{\mbox{\noindent
    Formerly Provost of Wentworth College,}}}}\\
  {\Large{\textit{\mbox{\noindent
    University of York, UK}}}}\\
  \vspace{90mm}
  \includegraphics[height=0.6cm]{wiley_logo.jpg}\
  {\Huge{\textbf{WILEY}}} \\
  A John Wiley \& Sons, Ltd, Publication
\end{center}
\vfill

\pagebreak

\mainmatter

\appendix
\pagestyle{headings}

\setcounter{chapter}{4}

\allowdisplaybreaks

\end{comment}

\chapter{Misprints and Errors}

\nextq Page xix, line 8.  For ``variation'' read ``variational''.

\nextq Page xix, line $-9$.  For ``Jacco Thyssen'' read ``Jacco
Thijssen''.

\nextq Page 32, Question 3.  For ``it it'' read ``if it''.

\nextq Page 100, line 8.  For ``\C$\theta$,1)'' read ``\C($\theta$,1)''.

\nextq Page 125, line $-9$.  For ``\C$\theta$,1)'' read ``\C($\theta$,1)''.

\nextq Page 128, line 4.  For ``$(\mean x-\theta)/(s/\sqrt{n}) \sim
_{n-1}$'' read ``$(\mean x-\theta)/(s/\sqrt{n}) \sim \t_{n-1}$''.

\nextq Page 128, footnote.  For ``$D_KL(1|2)$'' read ``$D_{KL}(1|2)$''.

\nextq Page 341, line $-9$.  For
\[ \frac{1}{n}\sum_{i=1}^n \frac{f(x_i)\,q(x_i)}{p(x_i)}
   = \sum_{i=1}^n
     (2\pi)^{-\frac{1}{2}}\exp\left[-\half x_i^2+x_i-4\right]. \]
read
\[ \frac{1}{n}\sum_{i=1}^n \frac{f(x_i)\,q(x_i)}{p(x_i)}
   = \frac{1}{n}\sum_{i=1}^n
     (2\pi)^{-\frac{1}{2}}\exp\left[-\half x_i^2+x_i-4\right]. \]

\nextq Page 341, line $-4$  For
\[ \E w(x) = \E \left(\frac{f(x)q(x)}{p(x)}\right) 
    = \int \left(\frac{f(x)q(x)}{p(x)}\right)\dx 
    = \int f(x)q(x)\dx = \theta \]
read
\[ \E w(x) = \E \left(\frac{f(x)q(x)}{p(x)}\right) 
    = \int \left(\frac{f(x)q(x)}{p(x)}\right)p(x)\dx 
    = \int f(x)q(x)\dx = \theta \]

\nextq Page 189, line $-3$.  For ``1210'' read ``1.210''.

\nextq Page 445.  Insert among references

\medskip

\hi
Gaver, D.\ and O'Muircheartaigh, I., Robust empirical Bayes analysis of
     event rates, \textit{Technometrics}, \textbf{29} (1) (1987), 1--15.

\nextq Page 453.  Insert among references

\medskip

\hi
Walther, G., Inference and modelling with log-concave distributions,
     \textit{Statistical Science}, \textbf{24} (2009), 319--327.

\smallskip

\nextq Page 461.  Include in index

\smallskip

Stein estimator, 264

\vspace{\baselineskip}

\noindent
\textit{Revised 14 November 2016.}
\end{document}

%