%
LaTeX source for Contents of Jeffeys' Theory of Probability\documentclass{article} \usepackage{longtable} \usepackage{times} \begin{document} \begin{center} {\Large\textbf{\textit{Theory of Probability}---Sir Harold Jeffreys}} \bigskip {\Large\textbf{Table of Contents}} \end{center} \begin{longtable}{llr} \multicolumn{3}{l}{\textbf{I. Fundamental Notions}} \\ \ \\ 1.0 & [Induction and its relation to deduction] & 1 \\ 1.1 & [Principles of inductive reasoning] & 8 \\ 1.2 & [Axioms for conditional probability] & 15 \\ 1.21 & [Fallacious applications of the product rule] & 26 \\ 1.22 & [Principles of inverse probability (Bayes)] & 26 \\ 1.23 & [Arbitrariness of numerical representation] & 29 \\ 1.3 & [Expected values; ideas of Bayes and Ramsey] & 30 \\ 1.4 & [The principle of insufficient reason] & 33 \\ 1.5 & [Consistency of posterior probabilities] & 34 \\ 1.51 & The infinite regress argument & 38 \\ 1.52 & The theory of types & 40 \\ 1.6 & [Inductive inference approaching certainty] & 43 \\ 1.61 & [Indistinguishable consequences] & 45 \\ 1.62 & [Complexity of differential equations] & 45 \\ 1.7 & [Suppression of an irrelevant premise; `chances'] & 50 \\ 1.8 & [Expectations of functions] & 53 \\ \ \\ \multicolumn{3}{l}{\textbf{II. Direct Probabilities}} \\ \ \\ 2.0 & Likelihood & 57 \\ 2.1 & Sampling [and the hypergeometric law] & 59 \\ 2.11 & [Sampling with replacement; the binomial law] & 60 \\ 2.12 & [The normal approximation to the binomial] & 61 \\ 2.13 & [The law of large numbers] & 62 \\ 2.14 & [Normal approximation to the hypergeometric] & 66 \\ 2.15 & Multiple sampling and the multinomial law & 67 \\ 2.16 & The Poisson law & 68 \\ 2.2 & The normal law of error & 70 \\ 2.3 & The Pearson laws & 74 \\ 2.4 & The negative binomial law & 75 \\ 2.5 & Correlation & 81 \\ 2.6 & Distribution functions & 83 \\ 2.601 & [Convergence of distribution functions] & 83 \\ 2.602 & [Lemma needed for the inversion theorem] & 84 \\ 2.61 & Characteristic functions & 85 \\ 2.62 & [Moments; m.g.f.s; semi-invariants] & 86 \\ 2.63 & [Moments of (negative) binomial and Poisson] & 87 \\ 2.64 & [M.g.f.\ of the Cauchy distribution] & 89 \\ 2.65 & The inversion theorem & 90 \\ 2.66 & Theorems on limits & 93 \\ 2.661 & [Convergence of d.f.s implies that of ch.f.s] & 93 \\ 2.662 & \textit{The smoothed distribution function} & 93 \\ 2.663 & [Convergence of ch.f.s implies that of d.f.s] & 94 \\ 2.664 & \textit{The central limit theorem} & 95 \\ 2.67 & [Central limits for Cauchy and Type VII] & 97 \\ 2.68 & [Case of a finite fourth moment] & 100 \\ 2.69 & [Symmetric laws over a finite range] & 101 \\ 2.7 & The $\chi^2$ distribution & 103 \\ 2.71 & [Effect of adjustable parameters on $\chi^2$] & 105 \\ 2.72 & [Effect of linear constraints on $\chi^2$ & 105 \\ 2.73 & [$\chi^2$ related to the Poisson law] & 106 \\ 2.74 & [$\chi^2$ related to the multinomial law] & 106 \\ 2.75 & [$\chi^2$ related to contingency tables] & 107 \\ 2.76 & [The interpretation of $\chi^2$; grouping] & 107 \\ 2.8 & The $t$ and $z$ distributions [$s$ and $s'$] & 108 \\ 2.81 & [The variance ratio and the $z$ distribution] & 111 \\ 2.82 & [Generalization of $\chi^2$ if variances unknown] & 112 \\ 2.9 & The specification of random noise & 114 \\ \ \\ \multicolumn{3}{l}{\textbf{III. Estimation Problems}} \\ \ \\ 3.0 & [Introduction] & 117 \\ 3.1 & [Conventional priors; the $dv/v$ rule] & 117 \\ 3.2 & Sampling [and the hypergeometric law] & 125 \\ 3.21 & [More on the law of succession] & 128 \\ 3.22 & [The Dirichlet integral; volume of a sphere] & 132 \\ 3.23 & Multiple sampling & 133 \\ 3.3 & The Poisson distribution [$S$ and $\Sigma$] & 135 \\ 3.4 & The normal law of error & 137 \\ 3.41 & [Normal law of unknown variance] & 138 \\ 3.42 & [Prediction from normal observations] & 142 \\ 3.43 & [Relation to one-way analysis of variance] & 143 \\ 3.5 & The method of least squares] & 147 \\ 3.51 & [Examples on least squares & 152 \\ 3.52 & Equations of unknown weights; grouping & 152 \\ 3.53 & Least squares equations; successive approximation & 154 \\ 3.54 & [Example of this method] & 157 \\ 3.55 & [Positive parameters; prior $d\alpha$ for $\alpha>0$\,] & 160 \\ 3.6 & The rectangular distribution & 161 \\ 3.61 & Re-scaling of a law of chance & 164 \\ 3.62 & Reading of a scale & 164 \\ 3.7 & Sufficient [and ancillary] statistics & 165 \\ 3.71 & The Pitman-Koopman theorem [and the exponential family] & 165 \\ 3.8 & The posterior probabilities that the true value, or the third \\ & \,observation, will lie between the first two observations & 170 \\ 3.9 & Correlation & 174 \\ 3.10 & Invariance theory $I_m$ and $J$] & 179 \\ \ \\ \multicolumn{3}{l}{\textbf{IV. Approximate Methods and Simplifications}} \\ \ \\ 4.0 & Maximum likelihood & 193 \\ 4.01 & Relation of maximum likelihood to invariance theory & 195 \\ 4.1 & An approach to maximum likelihood [via minimum $\chi^2$] & 196 \\ 4.2 & Combination of estimates with different estimated uncertainties & 198 \\ 4.3 & The use of expectations & 200 \\ 4.31 & Orthogonal parameters & 207 \\ 4.4 & [Approaches based on the median; outliers] & 211 \\ 4.41 & [Approximate normality with an example] & 214 \\ 4.42 & [Linear relations with both variables subject to error] & 216 \\ 4.43 & Grouping & 217 \\ 4.44 & Effects of grouping; Sheppard's correction & 220 \\ 4.45 & [Case of one known component of variance] & 221 \\ 4.5 & Smoothing of observed data & 223 \\ 4.6 & Correction of a correlation coefficient & 227 \\ 4.7 & Rank correlation [and Spearman's $\rho_0$] & 229 \\ 4.71 & Grades and contingency [and examples of $\rho_0$] & 235 \\ 4.8 & The estimation of an unknown and unrestricted integer \\ & [The tramcar problem] & 238 \\ 4.9 & Artificial randomization & 239 \\ \ \\ \multicolumn{3}{l}{\textbf{V. Significance Tests: One new parameter}} \\ \ \\ 5.0 & General discussion [and the Bayes factor $K$] & 245 \\ 5.01 & Treatment of old parameters & 249 \\ 5.02 & Required properties of $f(\alpha)$ & 251 \\ 5.03 & Comparison of two sets of observations & 252 \\ 5.04 & Selection of alternative hypotheses & 253 \\ 5.1 & Test of whether a suggested value of a chance is correct \\ & [binomial with a uniform prior] & 256 \\ 5.11 & Simple contingency [$2\times2$ tables] & 259 \\ 5.12 & Comparison of samples [one margin fixed] & 261 \\ 5.13 & [A special case] & 263 \\ 5.14 & [More general priors; several examples] & 263 \\ 5.15 & Test for consistency of two Poisson parameters & 267 \\ 5.2 & Test of whether the true value in the normal law is zero; \\ & standard error originally unknown & 268 \\ 5.21 & Test of whether a true value is zero; $\sigma$ taken as known & 274 \\ 5.3 & Generalization by invariance theory [and choice of priors] & 275 \\ 5.31 & General approximate form & 277 \\ 5.4 & Other tests related to the normal law & 278 \\ 5.41 & Test of whether two values are equal; \\ & standard errors supposed the same & 278 \\ 5.42 & Test of whether two location parameters are the same, \\ & standard errors not supposed equal & 280 \\ 5.43 & Test of whether a standard error has a suggested value $\sigma_0$ & 281 \\ 5.44 & Test of agreement of two estimated standard errors & 283 \\ 5.45 & Test of both the standard error and the location parameter & 285 \\ 5.46 & [Example on the tensile strength of tires] & 285 \\ 5.47 & The discovery of argon & 287 \\ 5.5 & Comparison of a correlation coefficient with a suggested value & 289 \\ 5.51 & Comparison of correlations & 293 \\ 5.6 & The intraclass correlation coefficient & 295 \\ 5.61 & Systematic errors; further discussion & 300 \\ 5.62 & estimation of intraclass correlation & 302 \\ 5.63 & Suspiciously close agreement [very small $\chi^2$] & 307 \\ 5.64 & [Eddington's \textit{Fundamental Theory}] & 310 \\ 5.65 & [The effect of smoothing data] & 311 \\ 5.7 & Test of the normal law of error & 314 \\ 5.8 & Test for independence in rare events & 319 \\ 5.9 & Introduction of new functions & 325 \\ 5.91 & [Relation to normal distribution theory] & 324 \\ 5.92 & Allowance for old functions & 325 \\ 5.93 & Two sets of observations relevant to the same parameter & 326 \\ 5.94 & Continuous departure from a uniform distribution of chance \\ & [distribution of angles; the circular normal (von Mises) law]& 328 \\ 5.95 & [Independence of the establishment and explanation of laws] & 331 \\ \ \\ \multicolumn{3}{l}{\textbf{VI. Significance Tests: Various Complications}} \\ \ \\ 6.0 & Combination of tests & 332 \\ 6.1 & [Tests on several new parameters at once] & 340 \\ 6.11 & [Simultaneous consideration of a new function \\ & and of correlation] & 341 \\ 6.12 & [Occam's rule (razor)] & 342 \\ 6.2 & [Fitting of two new harmonics] & 346 \\ 6.3 & Partial and serial correlation & 356 \\ 6.4 & Contingency affecting only diagonal elements & 360 \\ 6.5 & Deduction as an approximation & 365 \\ \ \\ \multicolumn{3}{l}{\textbf{VII. Frequency Definitions and Direct Methods}} \\ \ \\ 7.0 & [Introduction] & 369 \\ 7.01 & [Alternative definitions of probability] & 369 \\ 7.02 & [Objections to probability as the ratio of favourable cases \\ & \,to all cases (Neyman)] & 370 \\ 7.03 & [Objections to probability as a limiting frequency \\ & \,(Venn and von Mises) and to probability in terms of \\ & \,a hypothetical infinite population (Fisher)] & 373 \\ 7.04 & [Non-equivalence of the above theories] & 375 \\ 7.05 & [Need for probabilities of hypotheses] & 377 \\ 7.1 & [Problem of the uncertainty of a mean as treated \\ & by `Student' and Fisher] & 378 \\ 7.11 & [Different sets of data with the same hypothesis] & 382 \\ 7.2 & [Criticisms of the use of $P$ values in tests] & 383 \\ 7.21 & [Use of $P$ values in estimation] & 387 \\ 7.22 & [Uselessness of rejection in the absence of an alternative] & 390 \\ 7.23 & [Separation of $\chi^2$ into components] & 391 \\ 7.3 & [Karl Pearson and the method of moments] & 392 \\ 7.4 & [Similarities with R.A.\ Fisher's methods] & 393 \\ 7.5 & [Criticism of the Neyman-Pearson notion of errors of the \\ & \,second kind] & 395 \\ 7.6 & [Statistical mechanics; ergodic theory] & 398 \\ \ \\ \multicolumn{3}{l}{\textbf{VIII. General Questions}} \ \\ 8.0 & [Prior probabilities are \textit{not} frequencies & 401 \\ 8.1 & [Necessity of using prior probabilities] & 405 \\ 8.2 & [`Scientific caution'] & 409 \\ 8.3 & [Parallels with quantum mechanics] & 411 \\ 8.4 & [Should the rejection of unobservables be accepted?] & 412 \\ 8.5 & [Agreement with observations is not enough] & 417 \\ 8.6 & [Recapitulation of main principles] & 419 \\ 8.7 & [Realism versus idealism; religion versus materialism] & 422 \\ 8.8 & [Unprovability of idealism] & 424 \\ \ \\ \multicolumn{3}{l}{\textbf{Appendix A. Mathematical Theorems}} \ \\ A.1 & [If the sum of finite subsets of a set of reals is bounded \\ & \,the set is countable] & 425 \\ A.2 & [A bounded sequence of functions on a countable set \\ & \,has a convergent subsequence] & 425 \\ A.21 & [The Arzela-Ascoli theorem] & 425 \\ A.22 & [Weak compactness of the set of d.f.s] & 426 \\ A.23 & [Uniquensess of limits of d.f.s] & 426 \\ A.3 & Stieltjes integrals & 426 \\ A.31 & Inversion of the order of integration & 427 \\ A.4 & Approximations & 428 \\ A.41 & Abel's lemma & 428 \\ A.42 & Watson's lemma & 429 \\ \ \\ \multicolumn{3}{l}{\textbf{Appendix B. Tables of $K$}} \\ & [Introduction; grades of $K$] & 432 \\ I & [\S6.0, eq.\ (1), p.\,333] & 437 \\ II & [\S6.2, eq.\ (21), p.\,346; \\ & \,note the formula here is right and eq.\ (21), p.\,346 is wrong] & 438 \\ III & [\S5.92, first displayed equation, p.\,325] & 439 \\ IIIA & [\S5.2, eq.\ (33), p.\,274] & 439 \\ IV & [\S6.21, eq.\ (37), p.\,348] & 440 \\ IVA & [\S6.21, eq.\ (42), p.\,349] & 440 \\ V & [\S5.43, eq.\ (11) and eq.\ (14), p.\,282] & 441 \\ \end{longtable} \end{document} %