%
Paper by Helmert\documentclass{article} \usepackage{amsmath} \newcommand{\half}{\mbox{$\frac{1}{2}$}} \newcommand{\third}{\mbox{$\frac{1}{3}$}} \newcommand{\quarter}{\mbox{$\frac{1}{4}$}} \begin{document} \begin{flushleft} {\Large\textbf{The Calculation of the Probable Error from the Squares of the Adjusted Direct Observations of Equal Precision and Fechner's Formula}} \end{flushleft} \begin{flushleft} {\large\textbf{F R Helmert}} \end{flushleft} Let $\lambda$ denote the deviations of the observations from their arithmetic mean, let $\sigma$ denote the mean error, and $\rho$ the probable error. Then the optimal estimate of $\rho$ is well known to be given by the following formulae, \begin{align} \rho &= 0.67449\dots\sigma \notag \\ \sigma &= \sqrt{\frac{[\lambda\lambda]}{n-1}} \left[1\pm\sqrt{\frac{1}{2(n-1)}}\,\right] \end{align} where the square root in the bracket is the man error in the estimate of $\hat\sigma$, expressed as a fraction of $\hat\sigma$. It is our intention to provide a somewhat more rigorous derivation of this formula u nder the Gaussian law of error than given elsewhere, even where the principles of probability theory are used. If $\epsilon$ denotes a true error of an observation, then the future probability of a ser $\epsilon_1$, \dots, $\epsilon_n$ is \stepcounter{equation} \begin{equation} \label{futureprob} \left[\frac{h}{\sqrt{\pi}}\right]^n e^{-h^2[\epsilon\epsilon]}d\epsilon_1\dots d\epsilon_n. \end{equation} For given $\epsilon_1$, \dots, $\epsilon_n$, by setting the probability of a hypothesis $h$ proportional to this expresion, one obtains an optimal value of $\sigma^2$ \setcounter{equation}{0} \renewcommand{\theequation}{\Alph{equation}} \begin{equation} \label{optimalsigma} \frac{1}{2h^2}=\hat\sigma^2=\frac{[\epsilon\epsilon]}{n}. \end{equation} However, since the $\epsilon$ are unknown, we are forced to estimate $[\epsilon\epsilon]$ and this may be regarded as a weakness of previous derivations. This deficiency may be removed by the consideration that a set $\lambda_1$, \dots, $\lambda_n$ may arise from true errors in an infinity of ways. But since only the $\lambda$ are given, we must calculate the future probability of a set $\lambda_1$, \dots, $\lambda_n$ and take this expression as proportional to the probability of the hypothesis about $h$. \section{Probability of a Set $\lambda_1$, \dots, $\lambda_n$ of Deviations from the Arithmetic Mean} In expression (\ref{futureprob}) we introduce the variables $\lambda_1$, \dots, $\lambda_{n-1}$ and $\bar\epsilon$ in place of the $\epsilon$ by the equations: \begin{gather*} \epsilon_1=\lambda_1+\bar\epsilon,\qquad \epsilon_2=\lambda_2+\bar\epsilon, \dots \\ \epsilon_{n-1}=\lambda_{n-1}+\bar\epsilon, \qquad \epsilon_n=-\lambda_1-\lambda_2-\dots-\lambda_{n-1}+\bar\epsilon \end{gather*} This transformation is in accord with the known relations between the errors $\epsilon$ and deviations $\lambda$, since the addition of the equations gives $n\bar\epsilon=[\epsilon]$; at the same time the condition $[\lambda]=0$ is satisfied. The determinant of the transformation, a determinant of the $n$th degree, is \[ \left|\begin{array}{cccccc} 1 & \cdot & \cdot & & \cdot & 1 \\ \cdot & 1 & \cdot & & \cdot & 1 \\ \cdot & \cdot & 1 & & \cdot & 1 \\ \ \\ \cdot & \cdot & \cdot & & 1 & 1 \\ -1 & -1 & -1 & & -1 & 1 \end{array}\right| = n. \] Consequently expression (\ref{futureprob}) becomes \begin{equation} n\left[\frac{h}{\sqrt{\pi}}\right]^n e^{-h^2[\lambda\lambda]+h^2n\bar\epsilon^2} d\lambda_1 d\lambda_2\dots d\lambda_{n-1} d\bar\epsilon \end{equation} where $[\lambda\lambda]=\lambda_1^2+\lambda_2^2+\dots+\lambda_n^2$; $\lambda_n=-\lambda_1-\lambda_2-\dots-\lambda_{n-1}$. If we now integrate over all possible values of $\bar\epsilon$, we obtain for the probability of the set $\lambda_1\dots\lambda_n$ the expression \renewcommand{\theequation}{\arabic{equation}} \begin{equation} \label{problambdas} \sqrt{n}\left[\frac{h}{\sqrt{\pi}}\right]^{n-1} e^{-h^2[\lambda\lambda]} d\lambda_1 d\lambda_2\dots d\lambda_{n-1}. \end{equation} This may be verified by integration over all possible values of $\lambda_1\dots\lambda_{n-1}$, which yields unity, as required. \section{Optimal Hypothesis on $h$ for Given\\Deviations $\lambda$} For given values of the $\lambda$'s we set the probability of a hypothesis on $h$ proportional to expression (\ref{problambdas}). A standard argument then yields the optimal estimate of $h$ as the value maximizing (\ref{problambdas}). Differentiation shows that this occurs when \[ \frac{1}{2h^2}=\frac{[\lambda\lambda]}{n-1}. \] which establishes the first part of formula \renewcommand{\thefootnote}{\fnsymbol{footnote}} (1)\footnote{In the same way it is possible by strict use of probability theory to derive a formula for $\sigma^2$ when $n$ observations depend on $m$ unknowns, a result which the author has established to his satisfaction and will communicate elsewhere.}. \section{Probability of a Sum $[\lambda\lambda]$ of Squares of the Deviations $\lambda$} The probability that $[\lambda\lambda]$ lies between $u$ and $u+du$ is from (\ref{problambdas}) \begin{equation} \sqrt{n}\left[\frac{h}{\sqrt{\pi}}\right]^{n-1} \int d\lambda_1 \dots \int d\lambda_{n-1} e^{-h^2[\lambda\lambda]}, \end{equation} integrated over all $\lambda_1\dots\lambda_{n-1}$ satisfying \[ u \leq [\lambda\lambda] \leq u+du. \] We now introduce $n-1$ new variables $t$ by means of the equations \begin{align*} t_1 &= \sqrt{2}(\lambda_1+\half\lambda_2+\half\lambda_3 +\half\lambda_3+\dots+\half\lambda_{n-1})\\ t_2 &= \qquad\ \sqrt{\frac{3}{2}}(\lambda_2+\third\lambda_3+\third\lambda_4 +\dots+\third\lambda_{n-1})\\ t_3 &= \qquad\qquad\quad\ \sqrt{\frac{4}{3}}(\lambda_3+\quarter\lambda_4 +\dots+\quarter\lambda_{n-1})\\ .\quad &= \qquad . \qquad\qquad . \qquad\qquad . \\ t_{n-1} &= \qquad\qquad\qquad\qquad\qquad\qquad \sqrt{\frac{n}{n-1}}\lambda_{n-1} \end{align*} With the determinant $\sqrt{n}$ of the transformation, the above expression becomes \[ \sqrt{n}\left[\frac{h}{\sqrt{\pi}}\right]^{n-1} \int dt_1 \dots \int dt_{n-1} e^{-h^2[tt]}, \] the limits of integration being determined by the condition \[ u \leq [tt] \leq u+du. \] We now recognize that the probability for the sum of squares of the $n$ deviations $\lambda$, $[\lambda\lambda]=u$, is precisely the same probability that the sum of squares $[tt]$ of $n-1$ true errors equals $u$. This last probability I gave in Schl\"omlich's journal, 1875, p.\,303, according to which \begin{equation} \label{probss} \frac{h^{n-1}}{\Gamma(\frac{n-1}{2})} u^{\frac{n-3}{2}}u^{-h^2u}du, \end{equation} is the probability that the sum of squares $[\lambda\lambda]$ of the deviations $\lambda$ of $n$ equally precise observations from their mean lies between $u$ and $u+du$. Integration of (\ref{probss}) from $u=0$ to $\infty$ gives unity. \section{The Mean Error of the Formula\\ $\hat\sigma=\sqrt{[\lambda\lambda]:(n-1)}$} Since it is difficult to obtain a generally valid formula for the probable error of this formula, we confine ourselves to the mean error. The mean error of the formula $\hat\sigma^2= \frac{[\lambda\lambda]}{n-1}$ is known exactly, namely $\sigma^2\sqrt{2:(n-1)}$. We have therefore \[ \hat\sigma^2 = \frac{[\lambda\lambda]}{n-1} \left[1\pm\sqrt{\frac{1}{2(n-1)}}\right] \] and if $n$ is large it follows by a familiar argument that \[ \hat\sigma = \sqrt{\frac{[\lambda\lambda]}{n-1}} \left[1\pm\frac{1}{2}\sqrt{\frac{1}{2(n-1)}}\right]. \] Formula (1) results. However, if $n$ is small, for example equal to 2, this argument lacks all validity. For then $\sqrt{2:(n-1)}$ is no longer small compared to 1, in fact even larger than 1 for $n=2$. We now proceed as follows. The mean squared error of the formula \[ \hat\sigma = \sqrt{[\lambda\lambda]:(n-1)} \] is the mean value of \[ \left[\sqrt{\frac{\lambda\lambda]}{n-1}}-\sigma\right]^2. \] If one develops the square and recalls that $[\lambda\lambda]:(n-1)$ has mean $\sigma^2$ or $1:2h^2$, it follows that the mean of the above is \[ \frac{1}{h^2}- \frac{\sqrt{2}}{h}\left[\sqrt{\frac{[\lambda\lambda]}{n-1}}\right]. \] where the term in large brackets must be replaced by its mean value. Consideration of formula (\ref{probss}) yields for the mean value of $\sqrt{[\lambda\lambda]}$ the expression \[ \frac{h^{n-1}}{\Gamma(\frac{n-1}{2})} \int_0^{\infty} u^{\frac{n-2}{2}}u^{-h^2u^2}du, \text{i.e.}, \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})}, \] so that the mean squared error of $\hat\sigma$ is \[ \frac{1}{h^2}\left[1- \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})} \sqrt{\frac{2}{n-1}}\right]. \] We must therefore regard the following formula as more accurate than (1): \begin{align} \hat\sigma &= \sqrt{\frac{[\lambda\lambda]}{n-1}} \left[1\pm\sqrt{} \left\{2- \frac{\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})} \sqrt{\frac{8}{n-1}}\right\}\right] \notag \\ \hat\rho &= 0.67449\dots\hat\sigma, \end{align} where the square root following $\pm$ signifies the mean error of the formula for $\hat\sigma$. \bigskip\bigskip \begin{flushleft} \textit{Originally published as:} Der Genauigkeit der Formel von Peters zur Berechnung des wahrscheinglichen Fehlers directer Beobachtungen gleicher Genauiigkeit, \textit{Astron.\ Nachr.}\ \textbf{88} (1876), 113--132. The title translated above is the title of the section concerned rather than of the article. \end{flushleft} \end{document} %