Accessibility statement

Professor Dawn Coverley

 


PURE Staff link York Research Database

Visit Dr Dawn Coverley's profile on the York Research Database to:
See a full list of publications
Browse activities and projects
Explore connections, collaborators, related work and more

Structure, function and maintenance of the mammalian cell nucleus

Error-free transmission of genetic information across cell generations is essential to avoid accumulation of DNA sequence changes, including potential disease-causing mutations. In addition, high-fidelity maintenance of epigenetic information - the state in which DNA exists in association with proteins and RNA in the cell nucleus - is also essential for normal healthy cell function, because this provides finely tuned control over how the genetic information is used.

In fact, epigenetic instability, rather than genetic instability, could underpin the subtle and gradual degeneration of cellular function associated with some chronic diseases, and aging. We are researching the fidelity mechanisms that maintain the epigenetic state of normal cells, and in particular pathways by which epigenetic instability might give rise to genetic instability. We are trying to understand whether epigenetic instability (through failure of fidelity mechanisms) could be a very early change that underpins some human cancers, long before they emerge.

Our work is focussed on the CIZ1 protein and the factors that it interacts with inside cells, because CIZ1 is implicated in maintenance of epigenetic state. Much of our recent work is about the role of CIZ1 in maintaining the state of the inactive X chromosome in female cells. The inactive X chromosome is a well-studied example of DNA that is made inaccessible by association with proteins that bear chemical modifications which make its genetic information inaccessible. We find that if CIZ1 is removed the status of the inactive X chromosome is not maintained through cell division.

Using a wide range of approaches, from development and cell biology, through genetic analysis and structural biochemistry, we are studying the normal function of CIZ1, the diversity of alternatively spliced forms, and the changes in CIZ1 that are linked with a wide range of human cancers.

We are also developing findings that CIZ1B, a variant form, is present in lung tumours, and can be detected in the blood of people with early stage disease. The potential of this biomarker to become the basis of a blood test for the early detection of lung cancer is being developed by University of York spin-out Cizzle Biotechnology limited.

A longstanding research goal is to identify and exploit new factors, including CIZ1B, that might also serve as targets in cancer therapy or as markers of cell proliferation potential. More recently, in light of new findings, our questions are about the extent to which CIZ1 might contribute to the onset of epigenetic instability in the incipient tumour cell, and ways in which instability might be avoided.

 
Figure 1. Immunostaining for the CIZ1 protein (red) in mammalian nuclei where DNA is stained in blue.

 

Contact details

Professor Dawn Coverley
Professor
Department of Biology
University of York
York
YO10 5DD

Tel: 01904 328664