The Calculation of the Probable Error from the Squares of the Adjusted Direct Observations of Equal Precision and Fechner's Formula

F R Helmert

Let λ denote the deviations of the observations from their arithmetic mean, let σ denote the mean error, and ρ the probable error. Then the optimal estimate of ρ is well known to be given by the following formulae,

$$
\begin{align*}
& \rho=0.67449 \ldots \sigma \\
& \sigma=\sqrt{\frac{[\lambda \lambda]}{n-1}}\left[1 \pm \sqrt{\frac{1}{2(n-1)}}\right] \tag{1}
\end{align*}
$$

where the square root in the bracket is the man error in the estimate of $\hat{\sigma}$, expressed as a fraction of $\hat{\sigma}$. It is our intention to provide a somewhat more rigorous derivation of this formula u nder the Gaussian law of error than given elsewhere, even where the principles of probability theory are used.

If ϵ denotes a true error of an observation, then the future probability of a ser $\epsilon_{1}, \ldots, \epsilon_{n}$ is

$$
\begin{equation*}
\left[\frac{h}{\sqrt{\pi}}\right]^{n} e^{-h^{2}[\epsilon \epsilon]} d \epsilon_{1} \ldots d \epsilon_{n} . \tag{3}
\end{equation*}
$$

For given $\epsilon_{1}, \ldots, \epsilon_{n}$, by setting the probability of a hypothesis h proportional to this expresion, one obtains an optimal value of σ^{2}

$$
\begin{equation*}
\frac{1}{2 h^{2}}=\hat{\sigma}^{2}=\frac{[\epsilon \epsilon]}{n} . \tag{A}
\end{equation*}
$$

However, since the ϵ are unknown, we are forced to estimate $[\epsilon \epsilon]$ and this may be regarded as a weakness of previous derivations. This deficiency may be removed by the consideration that a set $\lambda_{1}, \ldots, \lambda_{n}$ may arise from true errors in an infinity of ways. But since only the λ are given, we must calculate the future probability of a set $\lambda_{1}, \ldots, \lambda_{n}$ and take this expression as proportional to the probability of the hypothesis about h.

1 Probability of a Set $\lambda_{1}, \ldots, \lambda_{n}$ of Deviations from the Arithmetic Mean

In expression (3) we introduce the variables $\lambda_{1}, \ldots, \lambda_{n-1}$ and $\bar{\epsilon}$ in place of the ϵ by the equations:

$$
\begin{gathered}
\epsilon_{1}=\lambda_{1}+\bar{\epsilon}, \quad \epsilon_{2}=\lambda_{2}+\bar{\epsilon}, \ldots \\
\epsilon_{n-1}=\lambda_{n-1}+\bar{\epsilon}, \quad \epsilon_{n}=-\lambda_{1}-\lambda_{2}-\cdots-\lambda_{n-1}+\bar{\epsilon}
\end{gathered}
$$

This transformation is in accord with the known relations between the errors ϵ and deviations λ, since the addition of the equations gives $n \bar{\epsilon}=[\epsilon]$; at the same
time the condition $[\lambda]=0$ is satisfied. The determinant of the transformation, a determinant of the nth degree, is

$$
\left|\begin{array}{ccccc}
1 & \cdot & \cdot & \cdot & 1 \\
\cdot & 1 & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot & 1 \\
& & & & \\
\cdot & \cdot & \cdot & 1 & 1 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right|=n
$$

Consequently expression (3) becomes

$$
\begin{equation*}
n\left[\frac{h}{\sqrt{\pi}}\right]^{n} e^{-h^{2}[\lambda \lambda]+h^{2} n \bar{\epsilon}^{2}} d \lambda_{1} d \lambda_{2} \ldots d \lambda_{n-1} d \bar{\epsilon} \tag{B}
\end{equation*}
$$

where $[\lambda \lambda]=\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{n}^{2} ; \lambda_{n}=-\lambda_{1}-\lambda_{2}-\cdots-\lambda_{n-1}$. If we now integrate over all possible values of $\bar{\epsilon}$, we obtain for the probability of the set $\lambda_{1} \ldots \lambda_{n}$ the expression

$$
\begin{equation*}
\sqrt{n}\left[\frac{h}{\sqrt{\pi}}\right]^{n-1} e^{-h^{2}[\lambda \lambda]} d \lambda_{1} d \lambda_{2} \ldots d \lambda_{n-1} \tag{3}
\end{equation*}
$$

This may be verified by integration over all possible values of $\lambda_{1} \ldots \lambda_{n-1}$, which yields unity, as required.

2 Optimal Hypothesis on h for Given Deviations λ

For given values of the λ 's we set the probability of a hypothesis on h proportional to expression (3). A standard argument then yields the optimal estimate of h as the value maximizing (3). Differentiation shows that this occurs when

$$
\frac{1}{2 h^{2}}=\frac{[\lambda \lambda]}{n-1} .
$$

which establishes the first part of formula (1)*.

3 Probability of a Sum [$\lambda \lambda]$ of Squares of the Deviations λ

The probability that $[\lambda \lambda]$ lies between u and $u+d u$ is from (3)

$$
\begin{equation*}
\sqrt{n}\left[\frac{h}{\sqrt{\pi}}\right]^{n-1} \int d \lambda_{1} \ldots \int d \lambda_{n-1} e^{-h^{2}[\lambda \lambda]} \tag{4}
\end{equation*}
$$

[^0]integrated over all $\lambda_{1} \ldots \lambda_{n-1}$ satisfying
$$
u \leq[\lambda \lambda] \leq u+d u
$$

We now introduce $n-1$ new variables t by means of the equations

$$
\begin{array}{rlrl}
t_{1} & =\sqrt{2}\left(\lambda_{1}+\frac{1}{2} \lambda_{2}+\frac{1}{2} \lambda_{3}+\frac{1}{2} \lambda_{3}+\cdots+\frac{1}{2} \lambda_{n-1}\right) \\
t_{2} & = & \sqrt{\frac{3}{2}}\left(\lambda_{2}+\frac{1}{3} \lambda_{3}+\frac{1}{3} \lambda_{4}+\cdots+\frac{1}{3} \lambda_{n-1}\right) \\
t_{3} & = & \sqrt{\frac{4}{3}}\left(\lambda_{3}+\frac{1}{4} \lambda_{4}+\cdots+\frac{1}{4} \lambda_{n-1}\right) \\
\cdot & = & \cdot & \cdot \\
t_{n-1} & = & & \sqrt{\frac{n}{n-1}} \lambda_{n-1}
\end{array}
$$

With the determinant \sqrt{n} of the transformation, the above expression becomes

$$
\sqrt{n}\left[\frac{h}{\sqrt{\pi}}\right]^{n-1} \int d t_{1} \ldots \int d t_{n-1} e^{-h^{2}[t t]}
$$

the limits of integration being determined by the condition

$$
u \leq[t t] \leq u+d u
$$

We now recognize that the probability for the sum of squares of the n deviations $\lambda,[\lambda \lambda]=u$, is precisely the same probability that the sum of squares [$t t]$ of $n-1$ true errors equals u. This last probability I gave in Schlömlich's journal, 1875, p. 303, according to which

$$
\begin{equation*}
\frac{h^{n-1}}{\Gamma\left(\frac{n-1}{2}\right)} u^{\frac{n-3}{2}} u^{-h^{2} u} d u \tag{5}
\end{equation*}
$$

is the probability that the sum of squares $[\lambda \lambda]$ of the deviations λ of n equally precise observations from their mean lies between u and $u+d u$. Integration of (5) from $u=0$ to ∞ gives unity.

4 The Mean Error of the Formula $\hat{\sigma}=\sqrt{[\lambda \lambda]:(n-1)}$

Since it is difficult to obtain a generally valid formula for the probable error of this formula, we confine ourselves to the mean error.

The mean error of the formula $\hat{\sigma}^{2}=\frac{[\lambda \lambda]}{n-1}$ is known exactly, namely $\sigma^{2} \sqrt{2:(n-1)}$. We have therefore

$$
\hat{\sigma}^{2}=\frac{[\lambda \lambda]}{n-1}\left[1 \pm \sqrt{\frac{1}{2(n-1)}}\right]
$$

and if n is large it follows by a familiar argument that

$$
\hat{\sigma}=\sqrt{\frac{[\lambda \lambda]}{n-1}}\left[1 \pm \frac{1}{2} \sqrt{\frac{1}{2(n-1)}}\right]
$$

Formula (1) results. However, if n is small, for example equal to 2 , this argument lacks all validity. For then $\sqrt{2:(n-1)}$ is no longer small compared to 1 , in fact even larger than 1 for $n=2$. We now proceed as follows.

The mean squared error of the formula

$$
\hat{\sigma}=\sqrt{[\lambda \lambda]:(n-1)}
$$

is the mean value of

$$
\left[\sqrt{\frac{\lambda \lambda]}{n-1}}-\sigma\right]^{2}
$$

If one develops the square and recalls that $[\lambda \lambda]:(n-1)$ has mean σ^{2} or $1: 2 h^{2}$, it follows that the mean of the above is

$$
\frac{1}{h^{2}}-\frac{\sqrt{2}}{h}\left[\sqrt{\frac{[\lambda \lambda]}{n-1}}\right]
$$

where the term in large brackets must be replaced by its mean value.
Consideration of formula (5) yields for the mean value of $\sqrt{[\lambda \lambda]}$ the expression

$$
\frac{h^{n-1}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{\infty} u^{\frac{n-2}{2}} u^{-h^{2} u^{2}} d u \text {, i.e., } \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)},
$$

so that the mean squared error of $\hat{\sigma}$ is

$$
\frac{1}{h^{2}}\left[1-\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \sqrt{\frac{2}{n-1}}\right]
$$

We must therefore regard the following formula as more accurate than (1):

$$
\begin{align*}
& \hat{\sigma}=\sqrt{\frac{[\lambda \lambda]}{n-1}}\left[1 \pm \sqrt{ }\left\{2-\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \sqrt{\frac{8}{n-1}}\right\}\right] \\
& \hat{\rho}=0.67449 \ldots \hat{\sigma} \tag{6}
\end{align*}
$$

where the square root following \pm signifies the mean error of the formula for $\hat{\sigma}$.

Originally published as: Der Genauigkeit der Formel von Peters zur Berechnung des wahrscheinglichen Fehlers directer Beobachtungen gleicher Genauiigkeit, Astron. Nachr. 88 (1876), 113-132. The title translated above is the title of the section concerned rather than of the article.

[^0]: * In the same way it is possible by strict use of probability theory to derive a formula for σ^{2} when n observations depend on m unknowns, a result which the author has established to his satisfaction and will communicate elsewhere.

