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Let A denote the deviations of the observations from their arithmetic mean,
let o denote the mean error, and p the probable error. Then the optimal estimate
of p is well known to be given by the following formulae,

p=0.67449.. .0
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where the square root in the bracket is the man error in the estimate of &,
expressed as a fraction of . It is our intention to provide a somewhat more
rigorous derivation of this formula u nder the Gaussian law of error than given
elsewhere, even where the principles of probability theory are used.
If € denotes a true error of an observation, then the future probability of a
Ser €1, ..., €, i

h n
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For given €1, ..., €,, by setting the probability of a hypothesis h proportional

to this expresion, one obtains an optimal value of o2
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However, since the e are unknown, we are forced to estimate [ee] and this may
be regarded as a weakness of previous derivations. This deficiency may be
removed by the consideration that a set A1, ..., A, may arise from true errors
in an infinity of ways. But since only the A are given, we must calculate the
future probability of a set A1, ..., A, and take this expression as proportional
to the probability of the hypothesis about h.

1 Probability of a Set A\, ..., )\, of Deviations
from the Arithmetic Mean

In expression (3) we introduce the variables A1, ..., A,—1 and € in place of the
€ by the equations:

€1 =M + €, € =X +E6E...
€n-1=An-1+E§ €n=—A — Ay — - — A1 +E€

This transformation is in accord with the known relations between the errors
e and deviations )\, since the addition of the equations gives ne = [¢]; at the same



time the condition [A\] = 0 is satisfied. The determinant of the transformation,
a determinant of the nth degree, is
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Consequently expression (3) becomes
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where AN = A2+ X3+ +22; A\, = = A1 — X2 —- - — \,,_1. If we now integrate

over all possible values of €, we obtain for the probability of the set A; ...\, the
expression
N h
|
This may be verified by integration over all possible values of A; ... \,—1, which
yields unity, as required.
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2 Optimal Hypothesis on h for Given
Deviations A\

For given values of the \’s we set the probability of a hypothesis on i propor-
tional to expression (3). A standard argument then yields the optimal estimate
of h as the value maximizing (3). Differentiation shows that this occurs when
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which establishes the first part of formula (1)*.

3 Probability of a Sum [A\)\] of Squares of the
Deviations A

The probability that [AA] lies between u and u + du is from (3)

vn [%]n1/d)\1.../d)\nle_h2[’\’\], (4)

*In the same way it is possible by strict use of probability theory to derive a formula for
02 when n observations depend on m unknowns, a result which the author has established to
his satisfaction and will communicate elsewhere.




integrated over all Ay ... \,_1 satisfying
u < [AN\] < u+ du.
We now introduce n — 1 new variables ¢ by means of the equations
tr= V2 + 2ha + I+ A+ A1)
lo = \/g()\2+%)\3+%/\4+-“+%/\n—1)
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With the determinant /n of the transformation, the above expression becomes
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the limits of integration being determined by the condition
u < [tt] < u+ du.

We now recognize that the probability for the sum of squares of the n de-
viations A, [AA] = w, is precisely the same probability that the sum of squares
[tt] of n — 1 true errors equals u. This last probability I gave in Schlémlich’s
journal, 1875, p. 303, according to which
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is the probability that the sum of squares [A\] of the deviations A of n equally
precise observations from their mean lies between « and w + du. Integration of
(5) from u = 0 to co gives unity.

4 The Mean Error of the Formula
o= \/[)\)\] :(n—1)

Since it is difficult to obtain a generally valid formula for the probable error of
this formula, we confine ourselves to the mean error.

The mean error of the formula 62 = % is known exactly, namely 0%1/2 : (n — 1).
We have therefore




and if n is large it follows by a familiar argument that
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Formula (1) results. However, if n is small, for example equal to 2, this
argument lacks all validity. For then /2 : (n — 1) is no longer small compared
to 1, in fact even larger than 1 for n = 2. We now proceed as follows.

The mean squared error of the formula

Fg=+[M:(n-1)

is the mean value of

If one develops the square and recalls that [A)] : (n — 1) has mean o2 or 1 : 2h2,
it follows that the mean of the above is
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where the term in large brackets must be replaced by its mean value.
Consideration of formula (5) yields for the mean value of y/[A)] the expres-

sion L - r(n
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so that the mean squared error of ¢ is
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We must therefore regard the following formula as more accurate than (1):
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p=0.67449...6, (6)
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where the square root following + signifies the mean error of the formula for 6.
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