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CHAPTER X.

TESTS OF CORRESPONDENCE BETWEEN DATA AND FORMULÆ.

IN the general method of the representation of observations bya mathematical for-
mula, the question must arise how the adequacy of the formulais to be tested, or, as it
is frequently phrased, a test of the goodness of fit is required.

Consider for example the table used above (p. 310) of the weekly expenditure on
food per “unit” in 970 families.
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cases. numbers. difference. deviations.m
Not exceeding5.5s 18 22 4 4.6 .7
5.5 . . . . . . . . . . . . . 107 123 16 10.4 2.1
7.5 . . . . . . . . . . . . . 255 234 21 13.3 1.9
9.5 . . . . . . . . . . . . . 245 249 4 13.6 .1

11.5 . . . . . . . . . . . . . 173 168 5 11.8 .1
13.5 . . . . . . . . . . . . . 101 89 12 9.0 1.6
15.5 . . . . . . . . . . . . . 38 51 13 7.0 3.3
17.5 . . . . . . . . . . . . . 17 22 5 4.6 1.1
19.5 . . . . . . . . . . . . . 9 11 2 3.3 .4
Over21.5 . . . . . . . . 7 1 6 ? 36.0

Totals 970 970 88 — 47.3

The calculated numbers are from the second approximation tothe Law of Great
Numbers. A rough method formerly used was to add the differences between the cal-
culated numbers and the numbers observed in each compartment, irrespective of sign,
and to express this total as a percentage of the number of cases. The “percentage misfit”
thus calculated is88 ÷ 9.70 = 9.1 per cent.

The weakness of this method is that it is not related to any measurement of prob-
ability, and one cannot tell at sight whether the fit is good ornot. Of two competing
formulæ, the presumption is that that which gives the lower percentage misfit is the bet-
ter; also when we have several sets of similar observations we can tell roughly by this
method which is nearest to the formula, and in some cases in which set the observations
are most regular.

The percentage misfit is generally diminished if compartments are merged together.
As regards the contents of individual compartments, we already have a simple test.

If mt is the calculated number in a compartment when there areN observations in all,
the chance of findingmt + et observations in this compartment in
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and the probability of exceeding any assigned multiple or sub-multiple ofσ is given by
the table (p. 271). The standard deviation for each grade in the above example except
the last is given, and it is seen that four out of nine errors are less thanσ, their standard
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deviation, two are betweenσ and3σ

2
and the remaining three less than2σ. No separate

measurement is improbable, and therefore the whole grouping may be presumed to be
not improbable, except the final number, 7 above21.5s.

That numbers in extreme grades should be discontinuous in relation to middle
grades is common in many classes of observations.

The deviations are not independent, however, since their total must be zero; and
even if the deviation in one compartment taken by itself is improbably large, it may yet
not be improbable when all the compartments are considered.A measurement which
allows for this modification has been devised by Professor Pearson, and part of the
analysis in a simplified form, a brief table of the results, and some applications are
given in the following paragraphs (seeThe Philosophical Magazine, No. 302, July,
1900, pp. 157–175).

Suppose that a formula, which is presumed to represent the distribution of observa-
tions, leads to the expectation ofm1, m2 . . .mn observations inn grades or compart-
ments, whenN, = m1 + m2 + · · · + mn, is the whole number of observations.

In an experiment or group of observations. suppose that(m1 + e1) . . . (mt +
et) . . . (mn + en) are found in the compartments, so thate1 + · · ·+ et + · · ·+ en = 0.

Write p1 = m1

N
. . . pt = mt

N
. . . .

Then pt is the chance that an observation from a group satisfying perfectly the
formula will fall into thetth grade.

The chance thatmt +et will fall into this grade whenN are chosen at random from
an indefinitely large universe is
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where σ2
t

= pt(1 − pt)N = ptqtN , whereqt = 1 − pt.
It can be shown that the joint chance of the errors named is
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1
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t
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, andSet = 0,

K being a constant.
For, if there were only two compartments,e1 + e2 = 0, and the joint chance equals

the chance of either.
Then p = m1

N
, q = m2

N
, m1 + m2 = N .

The chance is
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If there arethreecompartments

e1 + e2 + e3 = 0, m1 + m2 + m3 = N, σ2
1 =
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N
.
m1 + m2

N
.N,

and similarly forσ2
2 andσ2
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rσ1σ2 = meane1e2 = 1

2
(σ2
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2)

=
1

2N
{m3(m1 + m2) − m1(m2 + m3) − m2(m1 + m3)}

= −m1m2

N
. (Compare p. 419.)

The chance of the concurrence ofe1 ande2, and therefore ofe3 also, is given by
the normal correlation surface as

1

2πσ1σ2

√
1 − r2

e
−

1
2(1−r2)

„

e
2
1

σ2
1
+

e
2
1

σ2
1
−

2re1e2
σ1σ2

«

.

Now

σ2
1σ2

2(1 − r2) =
m1m2(m2 + m3)(m1 + m3)

N2
− m2

1m
2
2

n2
=

m1m2m3

N
,

sincem1 + m2 + m3 = N .
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, sincee1 + e2 = −e3.

Now if the second and third compartments had been merged intoone containing
M + E observations, whereM = m2 + m3 andE = e2 + e3, the chance would have
been
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whereK1 is a constant.
The effect, therefore, of dividing the second compartment without changing the

first is to alter the constant and to replaceE
2

M
by e

2
2
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in the index.

Similarly if two compartments are given, the effect of dividing the third compart-

ment without changing the first two must be to alter the constant and to replacee
2
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Hence forn compartments the chance,P , of errorsel, e2 . . .en. is

Ke−
1
2X

2

, whereX2 =
e2
1

m1

+
e2
2

m2

+ · · · + e2
n

mn

,

and e1 + e2 + . . . en = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(130).
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Notice thatX2 is the same expression as is used in obtaining the coefficientof
contingency.

[A proof of the formula, without the above method of induction is given by Pearson,
by the use of the multiple correlation equation.]

If the selections in the compartments had been independent and without the condi-
tion thate1 + e2 + · · · = 0, the chance would have been

Ke−
1
2X

2 × e
−

1
2

„

e
2
1

S−m1
+

e
2
2

S−m2
+...

«

for the index would have been

−1

2

(

e2
1N

m1(N − m1)
+ . . .

)

= −1

2

(

e2
1

m1

+
e2
1

N − m1

+ . . .

)

.

If there are many compartments and the largest of the fractions mt

N
is small, the sec-

ond part of the index is negligibleN compared with the first, and the two expressions
tend to equality, and the effect of the correlation is small.

The chance of the occurrences if there is no correlation is less than that when there
is correlation, since the last factor, if not negligible, isless than 1. (The constant
is eliminated in further processes.) Hence the aggregationof uncorrelated chances,
which is simpler than the present method, gives, an unduly unfavourable view of the
appropriateness of a formula.

The chance of every system of errors that gives a particular value ofX2 is the
same. Now, when the probability of.a deviation from the meanin normal frequency is
in question, it is customary to measure the probability thatso great a deviation to left
or right should have occurred, viz.,

2
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Similarly here we may measure the chance of the occurrence ofthe system of errors or
a less probable system by evaluating

2
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1
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dX , wheredX is written fordel.de2 . . . den−1

and the integral isn − 1 fold and extended fromX to∞, with the conditione1 + e2 +
· · · + en = 0, K being so chosen that
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The existence of this condition makes the integration complicated, and reference
should be made to Pearson’s original analysis for its working out.

The result is that

P =

√

2

π

∫

∞

X

e−
1
2X

2

.dX +

√

2

π
e−

1
2 X

2

(

X

1
+

X2

1.3
+ · · · + Xn−3

1.3.5 − n − 3

)

4



whenn is even, and

P = e−
1
2X

2

(

1 +
X2

2
+ · · · + Xn−2

2.4 . . . n − 3

)

whenn is odd. (131)

A table of the values of P for various values of x2 and n is givenin Biometrika,
Vol. 1, pp. 155seq. We can, in a very brief form, obtain a working rule for determining
whether a formula does or does not adequately represent an observed group by picking
out values ofx2 which for a givenn makeP = 1

2
or slightly more, or, further up the

scale of improbability, makeP = .0455 or slightly less, which corresponds to twice
the standard deviation in the normal curve.

n. X . P. X2. P.

3 1 .61 6 .050
4 2 .57 8 .046
5 3 .56 10 .040
6 4 .55 12 .035
7 5 .54 13 .043
8 6 .54 15 .036
9 7 .54 16 .042

10 8 .53 18 .035
11 9 .53 19 .040
12 10 .53 20 .045
13 11 .53 22 .038
14 12 .53 23 .042
15 13 .53 24 .046
16 14 .526 26 .038
17 15 .525 27 .041
18 16 .524 28 .045
19 17 .523 30 .037
20 18 .522
25 23 .520
30 28 .518

If X2 < n − 2, it is at least an even chance—as likely as not—that the observations would be found
from a group represented by the formula.

If X2 > 2n, the improbability is considerable.

Strictly, the test should be applied using as many compartments as are given by the
observations, for the merging of compartments affects the resulting value ofP ; but it
is often difficult to get back to ungraded observations, and in the case of continuous
variables, such as height, the original grades would be as fine as the measurements
could be made.

A more serious difficulty is that in any compartment the observedmt + et must be
integral, whilemt is in general not integral, and some value ofet would be found in
the most perfect representation. In consequence, the number to be expected in the least
occupied compartment must be reasonably large, or we obtainspurious contributions
to X2. This in practice rules out detailed extreme compartments,and in their rejection
or fusion an element of arbitrariness is introduced and no fine measurement is possible.
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On the other hand, when we are testing the applicability of the normal curve of
error, or the general law of great numbers, based on Edgeworth’s hypothesis (p. 298–
9), there is no expectation of closeness of fit on abscissæbeyond a small multiple of the
standard deviation—the smaller as the number of independent elements that contribute
to the measurement diminishes—so that the test is only applicable to the well-occupied
central compartments ; but in choosing the extent over whichthe test is made, the
fineness of the method is lost.

Hence, only a broad, but often sufficiently definite, result can be obtained.

Illustrations.

If we neglect the extreme grade in Example 7, on p. 310,X2 = 11.3, n = 9,
P = .18, and the formula “2nd approx.” is adequate.

If we take the Pearsonian formula, on the same page,X2 = 21.4, n = 9, P = .006,
but if we exclude the lowest as well as the highest grade,X2 = 4.1, n = 8, P = .77;
hence this formula expresses the central eight grades but not either extreme.

The same conclusions are reached if we simply take the standard deviations of the
grades separately.

In the table on p. 309 relating to the ages of school children,n = 8. The normal
curve givesX2 = 16.7 andP = .02, which is not satisfactory. The second approxi-
mation, however, givesX2 = .47 andP is indistinguishable from 1.

In the experiment on the numbers of letters in words (pp. 305–6), the sum of 10
words, graded by 5 letters, givesn = 13, and with the normal curveX2 = 33, P =
.001, or omitting the lowest and two highest extreme grades,n = 10, X2 = 6.1,
P = .73. The second approximation, however, including all grades,givesX2 = 8.4,
P = .74.

The sums of 100 words graded by 20 letters given = 10, X2 = 2.96, P = .965
with the normal curve, and no further approximation can improve on this.

An example of a different kind is found, when a distribution found by sample is
compared with the whole group from which the sample is taken,to verify the rules of
sampling or the adequacy of the method.

NUMBER OF COMPANIES PAYING DIVIDENDS AT VARIOUS RATES.
Relative

Number in numbers in all Standard e2

sample companies deviation. m

m. m.
Below 3 per cent. . . . . . 34 30 5.3 .53
3 per cent. . . . . . . . . . . . . 108 108.8 8.9 0
4 ” ” . . . . . . . . . . . . . . . . . 117 124.4 9.3 .44
5 ” ” . . . . . . . . . . . . . . . . . 60 70.8 7.4 1.65
6 per cent. to 8 per cent. 48 43.2 6.2 .53
8 per cent. . . . . . . . . . . . . 33 22.8 4.6 4.57

400 400 7.72

Heren = 6, X2
= 7.72, P = .185. The result is fairly good, but spoilt by the highest grade.
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This test has been applied to the distribution in two dimensions, in the experiment
tabulated on p. 394.

The 24 squares, .3 to left and right of centre, and 2 above and below it, which con-
tain in theory 11 or more observations, were taken as separate compartments. Outlying
squares were grouped in the 9 regions shown by the thick lines, rather arbitrarily, so as
to get contiguous squares which aggregated to at least 9 expected observations in the
second approximation. The results are as follows:—

Normal surface. 2nd approximation
X2. P. X2. P.

24 central squares 20.3 .59 17.5 .79
9 outlying regions 27.8 10.1
33 regions 48.6 .035 27.6 .59

The improvement in the outlying regions by the use of the second approximation is
very marked.

From: A L Bowley,Elements of Statistics(4th edn), London: P S King 1920.
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