KARL PEARSON’S APPROACH TO y?
CHAPTER X.

TESTS OF CORRESPONDENCE BETWEEN DATA AND FORMULZE.

IN the general method of the representation of observatioasbgthematical for-
mula, the question must arise how the adequacy of the forimtitabe tested, or, as it

is frequently phrased, a test of the goodness of fit is reduire
Consider for example the table used above (p. 310) of the weskenditure on
food per “unit” in 970 families.
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Expenditure. number of calculatede = m ~m’  Standard é
cases. numbers. difference. deviations.m
Not exceeding.5s 18 22 4 4.6 e
5 107 123 16 104 2.1
75 255 234 21 13.3 1.9
95 . i 245 249 4 13.6 1
115 . e, 173 168 5 11.8 A
135 .o, 101 89 12 9.0 1.6
155 . i, 38 51 13 7.0 3.3
175 . oo, 17 22 5 4.6 11
195. .. it 9 11 2 3.3 4
Over21.5........ _ 7 1 _ 6 _? 36.0
Totals 970 970 88 — 47.3

The calculated numbers are from the second approximatitimeth.aw of Great
Numbers. A rough method formerly used was to add the diffsrsibetween the cal-
culated numbers and the numbers observed in each compa#rimespective of sign,
and to express this total as a percentage of the number &.CHse “percentage misfit”
thus calculated i88 = 9.70 = 9.1 per cent.

The weakness of this method is that it is not related to anysomement of prob-
ability, and one cannot tell at sight whether the fit is goodhotr. Of two competing
formulae, the presumption is that that which gives the loveecentage misfit is the bet-
ter; also when we have several sets of similar observati@ensam tell roughly by this
method which is nearest to the formula, and in some casesighwht the observations
are most regular.

The percentage misfit is generally diminished if compart®are merged together.

As regards the contents of individual compartments, weadlyéave a simple test.
If m, is the calculated number in a compartment when therévaobservations in all,
the chance of findingn; + e; observations in this compartmentin
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and the probability of exceeding any assigned multiple brsultiple ofo is given by
the table (p. 271). The standard deviation for each gradesrabove example except
the last is given, and it is seen that four out of nine erroedess thaw, their standard



deviation, two are betweenand%" and the remaining three less thzin No separate
measurement is improbable, and therefore the whole grgupay be presumed to be
not improbable, except the final number, 7 abdves.

That numbers in extreme grades should be discontinuouslatiore to middle
grades is common in many classes of observations.

The deviations are not independent, however, since theil moust be zero; and
even if the deviation in one compartment taken by itself ipriotbably large, it may yet
not be improbable when all the compartments are considéredeasurement which
allows for this modification has been devised by Professard®a, and part of the
analysis in a simplified form, a brief table of the resultsd aome applications are
given in the following paragraphs (s@de Philosophical MagazineNo. 302, July,
1900, pp. 157-175).

Suppose that a formula, which is presumed to representstrébdition of observa-
tions, leads to the expectationwf;, ms ...m,, observations im grades or compart-
ments, whenV, = mq + ms + - - - + my,, IS the whole number of observations.

In an experiment or group of observations. suppose that+ e;)...(m: +
et)...(mn+ en) are found in the compartments, so thatt-- - +e¢;, +---+¢, = 0.

Write p; = P = .

Thenp, is the chance that an observation from a group satisfyinfepity the
formula will fall into thet" grade.

The chance thah, + ¢, will fall into this grade whenV are chosen at random from
an indefinitely large universe is
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where o7 = p;(1 — p;)N = pyq; N, whereg, = 1 — p;.
It can be shown that the joint chance of the errors named is
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Ke 2% wherexX? =S —, andSe; = 0,

my

K being a constant.

For, if there were only two compartments,+ e = 0, and the joint chance equals
the chance of either.

Then pz_%,q:%,ml—i—mg:N.

The chance is

1 2 2
N2 —l(%+;—2> . e2N e2(mi + ma
—¢ \"™ "™/ since—— = i ), ande? = 2.
\V2mTmaime mimse mimsa

If there arethreecompartments
e1t+ex+e3=0, mi+mag+mg=N GQ*EM
1 2 3— Y 1 2 3 — ) 1 — ]V—' fv <4V
and similarly foro3 ando3.

2 2 2
2e1e3 = e3 —e] — e€3.



ro10, = meaneie; = 3(03 — 0% — 03)

1
= 2N{m3(m1 + mg) ml(mg + m3) — mg(ml + m3)}
mims

== (Compare p. 419.)

The chance of the concurrenceaafande,, and therefore oés3 also, is given by
the normal correlation surface as

e2 e2 2
2no109V1 — 12
Now
2,2
o202(1 — 1) = mima(ma + ms)(mq + ms) _mim3 _ mimoms
1¥2 N2 7’L2 - N )

sincem; + mg +ms3 = N.
Hence the index of is

(€202 + e20? — 2ro109e169)

B 2m1m2m3
_ N e2ma(my +m3)  eimi(ma+ms3)  2eieamima
 mimomg N N N
1 2 2 2
= ———1(e1 +e2)"mimeo + eymaoms + esmim
ST . {( 1 2)“mima 1mamg + esmy 3}

1 < e? e% e3 ) ) B
| —+—+ —, SInCee; + e3 = —e3.
2 mi mo ms

Now if the second and third compartments had been mergedmm#acontaining
M + FE observations, wher&/ = my + m3 andE = e; + e3, the chance would have
been

wherekK is a constant.
The effect, therefore, of dividing the second compartmeimmat changing the

first is to alter the constant and to repla%e by < + e* in the index.
Similarly if two compartments are given, the effect of divid the third compart-

ment without changing the first two must be to alter the cartsiad to replacem‘—% by

e‘“ + 64 in the index, and so on.
Hence forn compartments the chanc®, of errorse, es .. .e,. is

2 2 2
Ke 2*X* wherex2= L 4 2 ... %
mi ma s

and e1teat . e =0 (130).



Notice thatX? is the same expression as is used in obtaining the coeffiofent
contingency.

[A proof of the formula, without the above method of inductie given by Pearson,
by the use of the multiple correlation equation.]

If the selections in the compartments had been independdwithout the condi-
tion thate; + e5 + - - - = 0, the chance would have been

1 e2N 1 /e e?
o 4 )= 22— 4 ).
2 ml(N—ml) 2 mi N—m1

If there are many compartments and the largest of the freetfp is small, the sec-
ond part of the index is negligibl& compared with the first, and the two expressions
tend to equality, and the effect of the correlation is small.

The chance of the occurrences if there is no correlatiorsistlean that when there
is correlation, since the last factor, if not negligible,léss than 1. (The constant
is eliminated in further processes.) Hence the aggregatiamcorrelated chances,
which is simpler than the present method, gives, an unduigvworable view of the
appropriateness of a formula.

The chance of every system of errors that gives a particuarevof X2 is the
same. Now, when the probability of.a deviation from the mi@amormal frequency is
in question, it is customary to measure the probability Hwagreat a deviation to left
or right should have occurred, viz.,

2/00 L 12
e Z.
V27

Similarly here we may measure the chance of the occurrertte afystem of errors or
a less probable system by evaluating

2/ .. Ke 2% dy, wheredy is written forde;.des . . . dey,—1

and the integral i® — 1 fold and extended fronX to co, with the conditiorne; + e5 +
---+ e, = 0, K being so chosen that

/ Ke 3X°d =1.

The existence of this condition makes the integration caradd, and reference
should be made to Pearson’s original analysis for its waykiut.
The result is that

2 [ 12 2 1v2 (X X2 X3
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whenn is even, and

iy X2 Xn—2 .
P=e¢2 (1+ 5 +---+2.4mn_3) whenn is odd. (131)

A table of the values of P for various values of x2 and n is giveBiometrika
Vol. 1, pp. 155eq We can, in a very brief form, obtain a working rule for detarimg
whether a formula does or does not adequately represensanvelol group by picking
out values ofz? which for a givenn makeP = % or slightly more, or, further up the
scale of improbability, maké”> = .0455 or slightly less, which corresponds to twice
the standard deviation in the normal curve.

X. P X2 P

n. .
3 1 .61 6 .050
4 2 57 8 .046
5 3 .56 10 .040
6 4 55 12 .035
7 5 .54 13 .043
8 6 .54 15 .036
9 7 .54 16 .042

10 8 .53 18 .035

11 9 .53 19 .040

12| 10 .53 20 .045
13| 11 .53 22 .038
14| 12 .53 23 .042
15| 13 .53 24 .046
16| 14 .526| 26 .038
17| 15 .525| 27 .041
18| 16 .524| 28 .045
19| 17 .523| 30 .037

20| 18 .522
25| 23 .520
30| 28 .518

If X2 < n —2,itis at least an even chance—as likely as not—that the vhtsens would be found
from a group represented by the formula.

If X2 > 2n, the improbability is considerable.

Strictly, the test should be applied using as many compantisrees are given by the
observations, for the merging of compartments affectsékalting value ofP; but it
is often difficult to get back to ungraded observations, anthé case of continuous
variables, such as height, the original grades would be asafinthe measurements
could be made.

A more serious difficulty is that in any compartment the obaedim, + ¢, must be
integral, whilem, is in general not integral, and some valuecpfvould be found in
the most perfect representation. In consequence, the numbe expected in the least
occupied compartment must be reasonably large, or we ofpairious contributions
to X 2. This in practice rules out detailed extreme compartmems,in their rejection
or fusion an element of arbitrariness is introduced and reorfirasurement is possible.



On the other hand, when we are testing the applicability efrtrmal curve of
error, or the general law of great numbers, based on Edgewdngpothesis (p. 298—
9), there is no expectation of closeness of fit on abscissaaldeysmall multiple of the
standard deviation—the smaller as the number of indepémritements that contribute
to the measurement diminishes—so that the test is onlycgipé to the well-occupied
central compartments ; but in choosing the extent over whiehtest is made, the
fineness of the method is lost.

Hence, only a broad, but often sufficiently definite, resaft be obtained.

Illustrations.

If we neglect the extreme grade in Example 7, on p. 3¥8,= 11.3, n = 9,
P = .18, and the formula “2nd approx.” is adequate.

If we take the Pearsonian formula, on the same pAdes 21.4,n = 9, P = .006,
but if we exclude the lowest as well as the highest gratfe= 4.1,n = 8, P = .77;
hence this formula expresses the central eight grades betther extreme.

The same conclusions are reached if we simply take the s@ddaiations of the
grades separately.

In the table on p. 309 relating to the ages of school childres, 8. The normal
curve givesX? = 16.7 and P = .02, which is not satisfactory. The second approxi-
mation, however, giveX? = .47 and P is indistinguishable from 1.

In the experiment on the numbers of letters in words (pp. 8D5he sum of 10
words, graded by 5 letters, gives= 13, and with the normal curv&? = 33, P =
.001, or omitting the lowest and two highest extreme grades;: 10, X2 = 6.1,
P = .73. The second approximation, however, including all gradags X2 = 8.4,
P =.74.

The sums of 100 words graded by 20 letters give: 10, X2 = 2.96, P = .965
with the normal curve, and no further approximation can ioweron this.

An example of a different kind is found, when a distributi@muhd by sample is
compared with the whole group from which the sample is takemerify the rules of
sampling or the adequacy of the method.

NUMBER OF COMPANIES PAYING DIVIDENDS AT VARIOUS RATES.

Relative
Numberin numbersinall Standard e?
sample companies deviation. m
m. m.
Below 3 percent. ..... 34 30 5.3 .53
3percent............. 108 108.8 8.9 0
A7 117 124.4 9.3 44
B 60 70.8 7.4 1.65
6 per cent. to 8 per cent. 48 43.2 6.2 .53
8percent............. 33 22.8 4.6 4.57
400 400 7.72

Heren = 6, X2 = 7.72, P = .185. The result is fairly good, but spoilt by the highest grade.



This test has been applied to the distribution in two dimams;iin the experiment
tabulated on p. 394.

The 24 squares, .3 to left and right of centre, and 2 above elosvbit, which con-
tain in theory 11 or more observations, were taken as sepeoatpartments. Outlying
squares were grouped in the 9 regions shown by the thick liateer arbitrarily, so as
to get contiguous squares which aggregated to at least Texpebservations in the
second approximation. The results are as follows:—

Normal surface. 2nd approximation

X2, P. X2 P.
24 central squares  20.3 .59 175 .79
9 outlying regions  27.8 10.1
33 regions 48.6 .035 27.6 .59

The improvement in the outlying regions by the use of the sd@pproximation is
very marked.

From: A L Bowley,Elements of Statistiqgith edn), London: P S King 1920.



